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In this paper, we focus on a novel nonlinear modeling and
dynamic analysis of the actuated butterfly valves coupled in
series. The actuated valves used in the chilled water systems of
the U.S. Navy and commercial ships, namely, “smart valves,”
recently have received much attention when many of them are
operating in a complex network. The network regulates the pres-
sure of the pipeline, while several nonlinear torques/forces includ-
ing the hydrodynamic and bearing torques and the
magnetomotive force affect the performance of each set individu-
ally and subsequently the whole system via the couplings among
the valves. The contribution of this work is to model such cou-
plings in the presence of the nonlinearities and an applied peri-
odic noise and then carry out dynamic analysis of the valves. We
examine the model developed with/without actuation by applying
a periodic noise on the upstream valve to capture the couplings
among the parameters of both the actuators and valves. This
would help us predict the behavior of a particular valve in the net-
work subject to motions of other valves.
[DOI: 10.1115/1.4027990]

1 Introduction

We previously developed a comprehensive dynamic model
[1–4] of a solenoid actuated butterfly valve as a part of an enor-
mous fluid network of the U.S. Navy ships and submarines [5–7].
The smart valve research we carried out is a critical element of
the chilled water systems used in cooling applications affecting
different components like radar and sonar systems. The dynamic
model was developed to describe the interdisciplinary physics of
the set including electromagnetics, fluid mechanics, and mechani-
cal elements. Magnetic actuators are used in various applications
including macroscale and microscale devices [8,9] for developing
medical, engineering, and transportation tools. Some efforts have
been made for synchronizing electromechanical systems in a uni-
directional coupling or in a network configuration [10–13] where
very few contributions have been reported for accurate nonlinear
analysis of the actuated valves coupled in series due to the com-
plexity of the whole system. Obviously, this work can be utilized
in a wide range of researches including bioengineering, medicine,
and engineering fields. The model developed here consists of two
actuated valves though the method utilized, promisingly, can be
used in developing a general nonlinear model including several
valves and actuators.

Undoubtedly, some simplifying assumptions were hence
needed to be applied to avoid worthless complexity by ignoring
the magnetic diffusion, fringing, and flux leakage of the solenoid
actuator [1]. Clearly, the diffusion time is too sensitive to the
applied current of the actuator such that a high value of the current

yields a negligible diffusion time and vice versa; we use the cur-
rent of 4(A) yielding the diffusion time of 20 ms for the Bessho
actuator [14]. Note that the plunger of the solenoid actuator is
motionless during the diffusion time; there is no powerful mag-
netic force to move the plunger. Another assumption is to utilize
laminar flow making us able to model the system analytically
(this has been a common practice to avoid the complexity of nu-
merical approach for the turbulent regime); the flow torques
including the hydrodynamic and bearing torques have been for-
mulated based on the laminar regime [1,15–17]. We apply those
assumptions here while the coupled system is too complex by
itself.

A nonlinear dynamic analysis we then carried out for a set of
the valve/actuator to capture dangerous behaviors including tran-
sient chaos and crisis [2]. Other results we have reported [4]
include quintessentially nonlinear dynamic behavior; a single but-
terfly valve oscillates due to the supply voltage containing a DC
component and a time varying component which can be modeled
as a sinusoidal noise. The source of the oscillation applied on the
upstream valve here is assumed to be mechanical in order to eval-
uate its effects on the downstream valve for both the steady and
moving phases. We also optimized the system design and opera-
tion in order to save the amount of energy used (upward of 41%)
and increase the set performance [3].

We mainly deal with two cases: (1) without actuation and (2)
with actuation. For the first case, we apply the periodic noise at
the steady position of the upstream valve to investigate what is
expected to occur for the downstream valve. The latter one dis-
cusses the valves’ motions coupled by the nonlinear magnetic pa-
rameters in order to consider the effects of a disturbed valve on
another.

2 Mathematical Modeling

Figure 1(a) presents two actuated valves in series and Fig. 1(b)
shows a simple model (schematic) of the unactuated valves held
in certain opening angles (a1 and a2) with the aid of constant tor-
ques, Thoi. The system here consists of two solenoid actuators
energized by electric voltages (DC or AC) which move the
plungers. The plungers are connected to butterfly valves through
the racks and pinions as shown in Fig. 1(a). For both the sets, the
magnetic flux generates the needed electromagnetic force to move
the plunger and subsequently results in the rotation of the butterfly
valve with the aid of the rack and pinion mechanism. Note that we
utilized a return spring for the valve opening; this is a common
practice among manufacturers. Both the valves are subject to the
nonlinear torques including the hydrodynamic (Th) and bearing
torques (Tb). We neglect the constant and small seating torque.
We begin to model the flow line as three resistors obviously two
of them as changing ones for the opening/closing valves and the
middle one as a constant resistor. Note that the inlet and outlet
pressures are supposed to be known. Assuming the laminar flow,
the Hagen–Poiseuille [18] formula states the pressure drop
between two valves (points 1 and 2) as follows:

P1 � P2 ¼
128lfL

pD4
v|fflfflffl{zfflfflffl}

RL

qv (1)

where lf is the fluid dynamic viscosity, Dv indicates the valve
diameter, qv is the volumetric flow rate, L is the pipe length between
two valves, and RL is the constant resistance. Typically, the
regulating valves including butterfly ones deal with two important
parameters, namely, the valve’s “resistance (R)” and “coefficient
(cv),” The valve resistance, which depends on the valve rotation
angle as well as the valve coefficient, is calculated as follows [19]:

RiðaiÞ ¼
891D4

v

c2
viðaiÞ

; i ¼ 1; 2 (2)
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where cv is the valve coefficient depending on the valve rotation
angle. The pressure drop across the valve is expressed as follows [17]:

DPiðaiÞ ¼ 0:5RiðaiÞqv2 (3)

where v is the flow velocity and q indicates the density of the
media. Rewriting Eq. (3) yields

DPiðaiÞ ¼
p2D4

vv2

16|fflfflffl{zfflfflffl}
q2

v

8� RiðaiÞq
p2D4

v|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
RniðaiÞ

¼ RniðaiÞq2
v (4)

The pressure drop of Eq. (4) is used in both the hydrodynamic and
bearing torques’ formulations. The hydrodynamic torques [17] of
both the valves are calculated as follows:

Thi ¼
16TciðaiÞD3

vDPi

3p 1� CcciðaiÞð1� sinðaiÞÞ
2

� �2
¼ fiðaiÞD3

vDPi (5)

where fiðaiÞ ¼ ð16TciðaiÞ=3p 1� ðCcciðaiÞð1� sinðaiÞÞ=2Þð Þ2Þ. Tci

and Ccci are the hydrodynamic torque and the sum of upper and
lower contraction coefficients which depend on the valve rotation
angle [1]. The bearing torque, as a resistance torque opposing the
valve motion, is obtained as follows [20]:

Tbi ¼ 0:5AdDPilDs ¼ CiDPi (6)

where Ci ¼ p=8ð ÞlD2
vDs, l is the friction coefficient of the bear-

ing area, and Ds indicates the stem diameter of the valve. Note
that we need to fit suitable curves on cv and Rni for analytical
modeling of the system; both the coefficients are functions of the
valve rotation angle and hence are needed to be formulated for the
analytical modeling and the nonlinear dynamic analysis (stability
analysis) [2] which will be carried out for the next phase of the
research. For our case study of Dv¼ 8 in., the valve coefficient
and resistance are formulated with the aid of the following
functions:

cvðaiÞ ¼ aa3
i þ ba2

i þ cai þ d (7)

RniðaiÞ ¼
7:2� 105

ðaa3
i þ ba2

i þ cai þ dÞ2
(8)

where a¼ 461.9, b¼� 405.4, c¼� 1831, and d¼ 2207. Clearly,
the mass continuity principle implies qin¼ qout¼ qv. Rewriting
Eq. (4) yields

Pin � P1

Rn1ða1Þ
¼ P2 � Pout

Rn2ða2Þ
(9)

Rn1P2 þ Rn2P1 ¼ Rn2Pin þ Rn1Pout (10)

Combining Eqs. (1) and (10) gives

P1ðRn1;Rn2;RLÞ ¼
Rn2Pin þ Rn1Pout þ Rn1RLqv

ðRn1 þ Rn2Þ
(11)

P2ðRn1;Rn2;RLÞ ¼
Rn2Pin þ Rn1Pout � Rn2RLqv

ðRn1 þ Rn2Þ
(12)

Based on Eqs. (11) and (12), we can explain the roles of Rn1, Rn2, and
RL on the variations of P1 and P2 with the given values of Pin, Pout,
and qv, as observed in the practice. On the other hand, the down-
stream valve is too sensitive to any even slight change of the upstream
valve dynamics. We hence can rewrite both the hydrodynamic and
bearing torques dependency on all the resistances as follows:

Thi ¼ fiðaiÞD3
vDPiðRn1;Rn2;RLÞ (13)

Tbi ¼ CiDPiðRn1;Rn2;RLÞ (14)

Applying the moment equation for both the valves, the equations
of motion are written as follows; for the actuated system, the mag-
netic forces (Fmi ¼ ðC2iN

2
i i2

i =2ðC1i þ C2iðgmi � xiÞÞ2Þ) [1] are uti-
lized in driving the valves where the holding torques (Thoi) are
replaced for the unactuated case

J1€a1 þ bd1 _a1 þ Kt1a1 ¼
Rn1Pin � Rn1Pout � Rn1RLqv

ðRn1 þ Rn2Þ

� �

� 16Tc1

3p 1� Ccc1ð1� sinða1ÞÞ
2

� �2
D3

v �
p
8

lD2
vDs � signð _a1Þ

2
6664

3
7775

þ rC21N2
1 i2

1

2ðC11 þ C21ðgm1 � x1ÞÞ2
þ Td1 (15)

J2€a2 þ bd2 _a2 þ Kt2a2 ¼
Rn2Pin � Rn2Pout � Rn2RLqv

ðRn1 þ Rn2Þ

� �

� 16Tc2

3p 1� Ccc2ð1� sinða2ÞÞ
2

� �2
D3

v �
p
8

lD2
vDs � signð _a2Þ

2
6664

3
7775

þ rC22N2
2 i2

2

2ðC12 þ C22ðgm2 � x2ÞÞ2
þ Td2 (16)

Fig. 1 (a) Two actuated butterfly valves in series. (b) A model of two valves in series without actuation.
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We also utilized the rate of current based on the following
equation:

dii
dt
¼ ðVi � RiiiÞðC1i þ C2iðgmi � xiÞÞ

N2
i

� C2iii _xi

ðC1i þ C2iðgmi � xiÞÞ
(17)

where x indicates the plunger displacement, r is the radius of the
pinion, Fm stands for the motive force, C1 and C2 are the reluctan-
ces of the magnetic path (without airgap) and airgap, respectively,
N is the number of coil, i indicates the applied current, gm is the
nominal airgap, J is the polar moment of inertia of the valve’s
disk, bd is the equivalent torsional damping, Kt indicates the
equivalent torsional stiffness, Td is the disturbance torque, V is the
supply voltage, R indicates the electrical resistance of coil, and _x
is the plunger velocity. Equations (15)–(17) constitute the sixth-
order dynamic model for the coupled valves.

3 Results

Developing a MATLAB code, a numerical analysis is carried out
using the values shown in Table 1 and gathered from the experi-
mental work we have done for a set of the valve/actuator, shown
in Fig. 2. We examine the system actuated using the solenoid ones
to drive the valves to a certain opening angle and without actua-
tion by applying constant torques to hold the valves at a steady
position. For both the cases, a limited periodic noise
(Td1 ¼ a sinðxtÞ and Td2¼ 0) is applied on the upstream valve to
present and discuss the coupling.

3.1 With Actuation. We apply the noise of Td1

¼ 103 sinð600tÞ (N �m) for the time interval of 0.03 s� t� 0.12 s.
We intentionally select the time range within the transient phases
of the valves’ motions. This would give us a clear map of what is
expected to occur for the moving valves subject to the noise.
Applying the same currents (i1,2¼ 4 A) for the valves’ fully open
positions (a10,20¼ 0), Fig. 3(a) shows the upstream valve subject
to the periodic noise causing small periodic oscillations for the
downstream valve. Note that these oscillatory motions occur dur-
ing the closing process. It is of great interest to capture such a cou-
pling between the valves particularly knowing that tens of valves
are operating in the network.

Figure 3(b) presents the valves’ angular velocities exhibiting
the same frequency but smaller amplitudes of the downstream
valve with respect to the noise applied on the upstream one. The
power spectrum is one of the tools from nonlinear dynamic

Table 1 The system parameters

lf 0.018 L 3 m
q 1000 kg=m

3 v 3m=s
l 0.1 Pin 4.5 kPa
J1,2 0.104� 10�1 kg �m2 bd1,2 2:2 N �m � s=rad
Ni 3300 C1i 1.56� 106 H�1

gmi 0.1 m Vi 24 V
r 0.05 m Dv 8 in.
Ds 0.5 in. Pout 0.1 kPa
k 20 kN m C2i 6.32� 108 H�1

Ri 6 X Tho1,2 1900 N �m

Fig. 2 The experimental work for a set of the actuated butterfly
valve

Fig. 3 (a) The actuated valves’ motions versus time. (b) The actuated valves’ angular veloc-
ities versus time.

Fig. 4 The valves’ power spectra
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analysis helping us clarify the motion of the downstream valve.
Figure 4 presents the valves’ power spectra revealing the same
frequencies (x ¼ 600rad=s) to confirm that the downstream valve
follows the periodic motion applied on the upstream one with
smaller amplitudes.

We discussed the coupling between the valves though another
interaction exists between the actuators where the rack and pinion
transfers the valve motion to the solenoid plunger.

Note that the current depends on both the valve rotation angle
(the plunger displacement) and angular velocity (the plunger ve-
locity), as stated in Eq. (17). The same oscillatory behavior of ei-
ther the valve rotation angle or angular velocity is hence expected
to be observed for the rates of currents shown in Fig. 5(a). This is
of great interest to capture the coupling between the actuation
parts due to the noise applied on the valve. We also expect the
same behavior of the magnetic force shown in Fig. 5(b) in connec-
tion with the current based on the above mentioned relationship.

The flow between the valves and modeled as a resistor, on the
other hand, transfers any change of the upstream to the down-
stream valve. Figure 3(a) also reveals a sudden increase and
decrease, at the end of the time interval (t¼ 0.12 s), in both the
upstream and downstream valves’ angles, respectively, presented
by two circles. These interesting phenomena can be interpreted as
follows. The noise applied on the upstream valve oscillates the
current (as discussed earlier) affecting the magnetomotive force.
Removing the noise, both the current and magnetic force increase

rapidly, as expected and shown in Figs. 5(a) and 5(b) by arrows,
causing the sudden increase observed for the upstream valve
angle.

The rapid increase of the upstream valve angle accelerates the
flow between the valves which results in a higher value of the
flow force hitting the downstream one. The accelerated and shock-
like flow force opposes the downstream valve to be closed and
consequently the valve angle decreases for a short period of time.
Note that the current of the downstream set rises (for the short pe-
riod of time) though its magnetic force reduces such that the role
of the valve angle, in comparison with the current, is more drastic
in increasing the denominator of the force term.

3.2 Without Actuation. In Sec. 3.1, we illustrated the cou-
pling between the valves moving toward the certain angles. We
here investigate the valves’ interactions to be held at a steady
position with the aid of the holding torques. The valves are
released from an initial angle, say 80 deg, and gradually settle
down with respect to the amounts of the applied constant torques.
We again exert a limited periodic noise on the upstream valve at
its steady position.

Applying Tho1¼ Tho2¼ 1900 (N �m) and the noise of
Td1 ¼ 150 sinð200tÞ(N �m) for 0.6 s� t� 1.2 s, Fig. 6 shows both
the transient phase ending at t¼ 0.6 s and the steady position sub-
ject to the noise. Note that we reduce the value of the torsional
damping (bt1;2 ¼ 0:5 N �m � s=rad) in order to magnify both the
phases and the coupling. The downstream valve again follows the
motion of the upstream one (the same frequency) with smaller
amplitudes but larger than those of the moving case.

Figure 6 also reveals the fluctuating (increasing and decreasing)
amplitudes of the upstream and accordingly the downstream
valves due to the noise. The physical interpretation of this phe-
nomenon is as follows. The applied noise oscillates the upstream
valve until it reaches its closing position with the aid of the help-
ing hydrodynamic torque [3]. At this point, the powerful and
resisting bearing torque [3] takes an important role to push back
the valve and hence the amplitude decreases. Note that the bearing
torque is too sensitive to the pressure drop across the valve and
we hence expect a remarkable value of the torque for a1> 60 deg;
we have carried out an experimental work with the valve diameter
of Dv¼ 2 in. (Fig. 2) presenting a sharp jump of the pressure drop
shown in Fig. 7(a) for the angles higher than that of 60 deg. Note
that the experiment was repeated several times to yield reliable
data. The amplitude hence reduces until the dominant hydrody-
namic torque, as a helping factor for a1< 60 deg, increases it.
Using a torque sensor, we also recorded the experimental values
of the total acting torque shown in Fig. 7(b) exhibiting the remark-
able values of the resisting torque (the dominant bearing torque)

Fig. 5 (a) The rates of currents for the noise applied on the upstream valve. (b) The mag-
netic forces for the noise applied on the upstream valve.

Fig. 6 The unactuated valves’ motions versus time
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to oppose the valve motion. Obviously, the fluctuations gradually
vanish when we remove the noise.

4 Conclusions

This paper focused on the nonlinear analysis of two solenoid
actuated butterfly valves coupled in series. We modeled the system
by making some simplifying assumptions. The dependency of the
valves’ pressure drops on the varying (Rn1 and Rn2) and constant
(RL) resistors were then established. The most important flow non-
linear torques including the hydrodynamic and bearing torques
were reformulated and then the equations of motion developed.

We applied a periodic noise on the upstream valve to capture
the couplings of the valves and the actuation parts. For the actu-
ated system, the downstream valve followed the oscillation of the
upstream one (the same frequency) with smaller amplitudes. The
shown power spectra support such a behavior of the downstream
valve.

The unactuated valves’ couplings were then investigated by
applying the holding torques to keep the valves at a steady posi-
tion. Surprisingly, we captured the remarkable roles of the hydro-
dynamic and bearing torques to fluctuate both the upstream (the
source of the noise) and downstream valves’ amplitudes. The sen-
sitive bearing torque to the pressure drop pushes back the valve
for the angles higher than that of 60 deg and the helping hydrody-
namic torque increases the amplitude of the oscillation for
a1< 60 deg. Note that the pressure drop experiences a sharp jump
for a1> 60 deg; the experimental work we have carried out vali-
dates the sharp jump of the pressure drop.

We currently focus on capturing dangerous behaviors including
chaos and crisis for a set of critical parameters of the coupled
system.
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