
Peiman Naseradinmousavi
Assistant Professor

Dynamic Systems and Control Laboratory,

Department of Mechanical Engineering,

San Diego State University,

San Diego, CA 92115

e-mails: pnaseradinmousavi@mail.sdsu.edu;

peiman.n.mousavi@gmail.com

David B. Segala
Naval Undersea Warfare Center,

1176 Howell Street,

Newport, RI 02841

e-mail: david.segala@navy.mil

C. Nataraj
Mr. & Mrs. Robert F. Moritz

Senior Endowed Chair

Professor in Engineered Systems

The Villanova Center for Analytics of Dynamic

Systems (VCADS),

Villanova University,

Villanova, PA 19085

e-mail: nataraj@villanova.edu

Chaotic and Hyperchaotic
Dynamics of Smart Valves
System Subject to a Sudden
Contraction
In this paper, we focus on determining the safe operational domain of a coupled
actuator–valve configuration. The so-called “smart valves” system has increasingly been
used in critical applications and missions including municipal piping networks, oil and
gas fields, petrochemical plants, and more importantly, the U.S. Navy ships. A compre-
hensive dynamic analysis is hence needed to be carried out for capturing dangerous
behaviors observed repeatedly in practice. Using some powerful tools of nonlinear
dynamic analysis including Lyapunov exponents and Poincar�e map, a comprehensive sta-
bility map is provided in order to determine the safe operational domain of the network
in addition to characterizing the responses obtained. Coupled chaotic and hyperchaotic
dynamics of two coupled solenoid-actuated butterfly valves are captured by running
the network for some critical values through interconnected flow loads affected by the
coupled actuators’ variables. The significant effect of an unstable configuration of the
valve–actuator on another set is thoroughly investigated to discuss the expected stability
issues of a remote set due to others and vice versa. [DOI: 10.1115/1.4033610]

1 Introduction

Multidisciplinary electromechanical–fluid systems have been
widely used in many megascale networks. Municipal piping sys-
tems, oil and gas fields, petrochemical plants, and more critically,
the U.S. Navy are the immediate ones which need to utilize a
reliable, safe, and efficient coupled flow distribution network.

Future smart cities would inevitably need an autonomous flow
control network in order to help improve the safety of such a criti-
cal system and also to decrease the incremental costs of operation
and maintenance. Malfunctions of the flow network have occurred
repeatedly resulting in the flow interruption of small towns/
districts. Although significant cost and energy would be needed to
be spent in order to restore the whole system in addition to human
resources required to be recruited. Economical and even social
impact of these malfunctions can be expected to be dramatic and
consequently, a fully automated flow network is needed to be
designed and operated.

The same issues exist for oil and gas fields and petrochemical
plants. The industry of oil and gas is one of the most sensitive ele-
ments of the global economy and plays important roles even in
global politics. The flow control network is the essential part of
these fields and is therefore required to be safely designed to mini-
mize the flow interruptions leading to much higher oil/gas
production.

The U.S. National Defense and Homeland Security is undoubt-
edly a highly important priority which requires to be addressed
and investigated carefully. The U.S. Navy broadly employs the
network of coupled electromechanical valve sets for cooling pur-
poses, mainly for chilled water systems. The proper performance
of the network is remarkably effective for other critical units of
radar, sonar, defense systems, etc.

We have carried out broad analytical and experimental studies
from nonlinear modeling to design optimization of both an

isolated and interconnected symmetric butterfly valves driven by
solenoid actuators [1–8]. The multidisciplinary couplings, includ-
ing electromagnetics and fluid mechanics, had to be thoroughly
regarded in the modeling phase in order to yield an accurate non-
linear model of such a complex system. A third-order nondimen-
sional dynamic model of the single set was derived to be used in
nonlinear dynamic analysis [3] and optimal design [4].

The dynamic analysis expectedly yielded practically observed
crisis and transient chaotic dynamics of a single actuated valve for
some critical physical parameters. A comprehensive stability map
was also presented as an efficient tool to determine the safe do-
main of operation which in turn could serve for identifying the
lower and upper bounds of the design optimization efforts. The
design optimization was then carried out [4] to select the optimal
actuation unit’s parameters coupled with the mechanical and fluid
parts in order to significantly reduce the amount of energy
consumption (upward of 40%).

Note that the applications addressed earlier contain thousands
of actuated valves in which a high level of dynamic coupling has
been repeatedly observed in practice. These dynamic couplings
among different sets need to be captured through analytical stud-
ies. We have developed [5] a novel nonlinear model for two sets
of solenoid-actuated butterfly valves operating in series. The clos-
ing/opening valves were modeled as changing resistors and the
flow between them as a constant one. A sixth-order nonlinear
coupled model revealed the high dynamic sensitivity of each ele-
ment of a set, the valve and the actuator, to another one and vice
versa. The power spectrum was used in confirming the same fre-
quency response of a neighbor set due to the external periodic
noise applied on another set of the valve and actuator.

In further studies, we optimized the design of coupled actuation
units of two sets operating in series [8] subject to a sudden con-
traction. The pipe contraction imposed an additional resistance to
be modeled, and therefore, the coupled dynamic equations derived
in Ref. [5] had to be slightly modified. We represent the modeling
process here for completeness. We have surprisingly established
an interesting coupling between currents of the actuation units
through the interconnected flow loads, including hydrodynamic
and bearing torques, which affect both the valves’ dynamics.

Important nonlinear phenomena in electromechanical systems
have also received considerable attention. Sun et al. [9] studied
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the hyperchaotic behavior of the newly presented simplified Lor-
enz system by using a sinusoidal parameter variation and hyper-
chaos control of the forced system via feedback. Banerjee et al.
[10] investigated the synchronization of chaos and hyperchaos in
first-order time-delayed systems that are coupled using the nonlin-
ear time-delay excitatory coupling by assigning two characteristic
time delays: the system delay that is same for both the systems
and the coupling delay associated with the coupling path. Many
efforts for analyzing hyperchaotic dynamics have been reported in
Refs. [11–26].

We have addressed the modeling process subject to the pipe
contraction in Ref. [8] and represent here for completeness. The
contribution of this work is the inclusion of interconnected
electromechanical–fluid nonlinearities between two actuator–
valve configurations to thoroughly analyze the effects of an
unstable set of the valve–actuator on another one. Through this
comprehensive analysis, chaotic and hyperchaotic dynamics of
two coupled configurations are captured by exposing the network
to some critical values. The responses are then characterized using
some powerful tools including Lyapunov exponents and Poincar�e
map.

2 Mathematical Modeling

Figure 1(a) shows a pair of symmetric butterfly valves driven
by solenoid actuators through rack and pinion arrangements. The
rack and pinion mechanism provides a kinematic constraint which
connects the dynamics of the valve and actuator. Applying DC
voltages, as being used in the Navy ships for chilled water sys-
tems, the motive forces give translational motions to the actuators’
moving parts (plungers), and subsequently, the valves rotate to
desirable angles. Note that a return spring has been a common
practice among industries to open the valves.

Interconnected modeling of such a multiphysics system
undoubtedly needs some simplifying assumptions to neglect use-
less and tremendously time-consuming numerical calculations.
The magnetic force resulted from the magnetic field needs an
extremely short period of time to reach its maximum value. This
period is the so-called “diffusion time” and has an inverse rela-
tionship with the amount of current used. Note that using current
of 4 A would yield a negligible diffusion time of sd � 20 ms [1]
with respect to the nominal operation time of 40 s. We have to
also assume dominant laminar flow for both the coupled valves.
Note that developing an analytical model is a necessity to carry
out the dynamic analysis and optimization which would lead us to
make such a commonly used assumption and also to avoid the nu-
merical difficulties involved with a turbulent regime. However, a
crucial question needs to be carefully answered with respect to the

validity of such an assumption. Using the values of pipe diameter
and flow mean velocity listed in Table 1, one can easily distin-
guish the existence of the turbulent regime which invalidates the
assumption we have made. From another aspect, the analytical
formulas derived for the flow loads, including the hydrodynamic
and bearing torques, have been developed based on the assump-
tion of laminar flow [27,28]. To address the issues discussed
above, we have carried out experimental work to measure the sum
of the hydrodynamic and bearing torques as the most affecting
loads on the valves’ and subsequently actuators’ dynamics [8].
The experiment yielded the total torque (Fig. 2) for the inlet ve-
locity of v � 2:7 m=s and valve diameter of Dv ¼ 2 in: validating
the laminar flow assumption [29]. The flow torques have shown
highly important roles for the dynamics of an isolated solenoid-
actuated butterfly valve and we hence expect to observe such
effects for the interconnected sets [5].

The coupled system is modeled as a set of five resistors. Two
changing resistors represent the closing/opening valves, two con-
stant ones indicate head losses between the valves, and another is
due to the pipe contraction as shown in Fig. 1(b). The inlet and
outlet pressure values are given in Table 1. Using the assumption
of the dominant laminar flow, the pressure drops between two
valves can be expressed based on the Hagen–Poiseuille [30] and
Borda–Carnot [31] formulas (points 1 and 2)

P1 � Pcon1 ¼
128lf L1

pD4
v1|fflfflfflffl{zfflfflfflffl}

RL1

qv (1)

Pcon1 � Pcon2 ¼
1

2
Kconqv2

out (2)

Fig. 1 (a) A schematic configuration of two solenoid-actuated butterfly valves subject to sudden contraction and (b) a
coupled model of two butterfly valves in series without actuation

Table 1 The system parameters

P 1000 kg/m3 v 0.1 m/s
J1;2 0:104� 10�1 kg m2 N2 3000
N1 3000 C11;22 1.56� 106 H�1

gm1;m2 0.1 m V1;2 24 V
Dv1 0.2032 m Dv2 0.127 m
Ds1;s2 0.01 m Pout 2 kPa
k1;2 1000 N�m�1 C21;22 6.32� 108 H�1

L1 2 m L2 1 m
lf 0.018 kg m�1 s�1 R1;2 6 X
r1;2 0.05 m h 90 deg
Pin 256 kPa

051025-2 / Vol. 11, SEPTEMBER 2016 Transactions of the ASME

Downloaded From: http://computationalnonlinear.asmedigitalcollection.asme.org/ on 06/10/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Pcon2 � P2 ¼
128lf L2

pD4
v2|fflfflfflffl{zfflfflfflffl}

RL2

qv (3)

where qv is the volumetric flow rate, lf indicates the fluid dynamic
viscosity, Dv1 and Dv2 are the valves’ diameters, L1 and L2 stand
for the pipe lengths before and after contraction, RL1 and RL2 indi-
cate the constant resistances, and Pcon1 and Pcon2 are the flow pres-
sures before and after contraction. Kcon is calculated as follows:

Kcon ¼ 0:5 1� b2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin
h
2

� �s
(4)

where b indicates the ratio of minor and major diameters
Dv2=Dv1ð Þ, and h is the angle of approach. The values listed in

Table 1 easily yield Kcon¼ 0.2562. We then rewrite Eq. (2) as
follows:

Pcon1 � Pcon2 ¼
1

2
Kconqv2

out

¼ 8Kcon

p2D4
v2

q|fflfflfflffl{zfflfflfflffl}
Rcon

p2D4
v2v2

out

16|fflfflfflfflfflffl{zfflfflfflfflfflffl}
q2

v

¼ Rconq2
v

(5)

where Rcon is the resistance due to the pipe contraction. The pres-
sure drop between the valves can be derived by adding Eqs.
(1)–(3) and (5)

P1 � P2 ¼ RL1 þ RL2 þ Rconqv½ �qv (6)

The valve’s “resistance (R)” and “coefficient (cv),” as important
parameters of the regulating valves, are nonlinear functions of the
valve rotation angle to be stated [32] as follows:

Ri aið Þ ¼
891D4

vi

c2
vi aið Þ

; i ¼ 1; 2 (7)

Based on the assumption of laminar flow, the valve’s pressure
drop is calculated via the following relationship [27]:

DPi aið Þ ¼ 0:5Ri aið Þqv2 (8)

where a indicates the valve rotation angle, q is the density of the
media, and v stands for the flow velocity. Rewriting Eq. (8) in the
standard form gives

DPi aið Þ ¼
p2D4

viv
2

16|fflfflfflffl{zfflfflfflffl}
q2

v

8� Ri aið Þq
p2D4

vi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Rni aið Þ

¼ Rni aið Þq2
v (9)

The hydrodynamic (Th) and bearing (Tb) torques [27,28] have
expectedly shown the high sensitivity to the pressure drop
obtained via Eq. (9) leading us to rewrite them as follows:

fi aið Þ ¼
16Tci aið Þ

3p 1�
Ccci aið Þ 1� sin aið Þ

� �
2

� �2
(10)

Thi ¼
16Tci aið ÞD3

viDPi

3p 1�
Ccci aið Þ 1� sin aið Þ

� �
2

� �2
¼ fi aið ÞD3

viDPi (11)

Tbi ¼ 0:5AdDPilDs ¼ CiDPi (12)

where Ds stands for the stem diameter of the valve, l indicates the
friction coefficient of the bearing area, Ci ¼ p=8ð ÞlD2

viDs, and Tci

and Ccci are the hydrodynamic torque and the sum of upper and
lower contraction coefficients, respectively, depending on the
valve rotation angle [1].

The comprehensive stability map we have presented in Ref. [3]
was based on a nonlinear analytical model. The analytical model
had to be used in the dynamic analysis to investigate the system
stability around equilibria by calculating its eigenvalues through
the Jacobian matrix; this has led us to identify the safe operational
domain to be utilized in the design optimization. The same prac-
tice was employed in Ref. [8] with the aid of fitting suitable
curves on cvi and Rni in order to model the system analytically.
For our case study of Dv1 ¼ 8 in. and Dv2 ¼ 5 in., the valves’
coefficients and resistances are developed as follows:

cv1 a1ð Þ ¼ p1a
3
1 þ q1a

2
1 þ o1a1 þ s1 (13)

cv2 a2ð Þ ¼ p2a
3
2 þ q2a

2
2 þ o2a2 þ s2 (14)

Rn1 a1ð Þ ¼
e1

p1a3
1 þ q1a2

1 þ o1a1 þ s1

� �2
(15)

Rn2 a2ð Þ ¼
e2

p2a3
2 þ q2a2

2 þ o2a2 þ s2

� �2
(16)

where e1 ¼ 7:2� 105; p1 ¼ 461:9; q1 ¼ �405:4; o1 ¼ �1831;
s1 ¼ 2207; e2 ¼ 4:51� 105; p2 ¼ 161:84; q2 ¼ �110:53;
o2 ¼ �695:1, and s2 ¼ 807:57. These fittings were selected with
respect to the decremental and incremental profiles of the valves’
coefficients and resistances, respectively [5,29]. Applying the
mass continuity principle (qin ¼ qout ¼ qv) and then rewriting
Eq. (9) yield

Pin � P1

Rn1 a1ð Þ
¼ P2 � Pout

Rn2 a2ð Þ
(17)

Rn1P2 þ Rn2P1 ¼ Rn2Pin þ Rn1Pout (18)

The interconnected P1 and P2 terms are derived by combining
Eqs. (6) and (18) as follows:

P1 ¼
Rn2Pin þ Rn1Pout þ Rn1 RL1 þ RL2 þ Rconqvð Þqv

Rn1 þ Rn2ð Þ (19)

P2 ¼
Rn2Pin þ Rn1Pout � Rn2 RL1 þ RL2 þ Rconqvð Þqv

Rn1 þ Rn2ð Þ (20)Fig. 2 A comparison between the experimental and analytical
total torques
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The dynamic sensitivities of P1 and P2 to Rn1; Rn2; RL1; RL2, and
Rcon are distinguishable through Eqs. (19) and (20), as observed in
the practice. Any slight dynamic changes of the upstream set of
the valve–actuator would be expected to be observed for the
downstream one. The hydrodynamic and bearing torques’ depend-
encies on all the resistances are reformulated as follows:

Thi ¼ fi aið ÞD3
viDPi Rn1;Rn2;RL1;RL2;Rconð Þ (21)

Tbi ¼ CiDPi Rn1;Rn2;RL1;RL2;Rconð Þ (22)

fi is a nonlinear function of the changing Tci, Ccci, and the valve
rotation angle. To carry out a systematic dynamic analysis, the
following functions are fitted to the D3

vifi of each valve [5,29]:

Th1 ¼ a1a1eb1a1
1:1 � c1ed1a1

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
D3

v1
f1

Pin � P1ð Þ

¼ a1a1eb1a1
1:1 � c1ed1a1

� �
�

e1

p1a3
1 þ q1a2

1 þ o1a1 þ s1

� �2

X2

i¼1

ei

pia3
i þ qia2

i þ oiai þ si

� �2

� Pin � Pout � RL1 þ RL2 þ Rconqvð Þqvð Þ
(23)

Th2 ¼ a01a2eb0
1
a1:1

2 � c01ed0
1
a2

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D3
v2

f2

P2 � Poutð Þ

¼ a01a2eb0
1
a2

1:1 � c01ed0
1
a2

� 	
�

e2

p2a3
2 þ q2a2

2 þ o2a2 þ s2

� �2

X2

i¼1

ei

pia3
i þ qia2

i þ oiai þ si

� �2

� Pin � Pout � RL1 þ RL2 þ Rconqvð Þqvð Þ
(24)

where a1 ¼ 0:4249; a01 ¼ 0:1022; b1 ¼ �18:52; b01 ¼ �17:0795;
c1 ¼ �7:823 � 10�4; c01 ¼ �2 � 10�4; d1 ¼ �1:084, and d01
¼�1:0973.

We have previously derived the rate of current and magnetic
force terms [1], which are utilized in developing the sixth-order
coupled dynamic model [8] as follows. Note that both the motive
force and current are highly sensitive to the plunger displacement
and subsequently the valve rotation angle

Fmi ¼
C2iN

2
i i2

i

2 C1i þ C2i gmi � xið Þ
� �2

(25)

dii
dt
¼

Vi � Riiið Þ C1i þ C2i gmi � xið Þ
� �

N2
i

� C2iii _xi

C1i þ C2i gmi � xið Þ
� � (26)

_z1 ¼ z2 (27)

_z2 ¼
1

J1

r1C21N2
1z2

3

2 C11 þ C21 gm1 � r1z1ð Þ
� �2

� bd1z2 � k1z1

"

þ

Pin � Pout � RL1 þ RL2 þ Rconqvð Þqvð Þe1

p1z3
1 þ q1z2

1 þ o1z1 þ s1

� �2P
i¼1;4

ei

piz3
i þ qiz2

i þ oizi þ si

� �2

� a1z1eb1z1
1:1 � c1ed1z1

� �
� C1 � tan h Kz2ð Þ

h i

(28)

_z3 ¼
V1 � R1z3ð Þ C11 þ C21 gm1 � r1z1ð Þ

� �
N2

1

�
r1C21z3z2

C11 þ C21 gm1 � r1z1ð Þ
� � (29)

_z4 ¼ z5 (30)

_z5 ¼
1

J2

"
r2C22N2

2z2
6

2 C12 þ C22 gm2 � r2z4ð Þ
� �2

� bd2z5 � k2z4

þ

Pin � Pout � RL1 þ RL2 þ Rconqvð Þqvð Þe2

p2z3
4 þ q2z2

4 þ o2z4 þ s2

� �2P
i¼1;4

ei

piz3
i þ qiz2

i þ oizi þ si

� �2

� a01z4eb0
1
z4

1:1 � c01ed0
1
z4

� 	
� C2 � tan h Kz5ð Þ

h i#
(31)

_z6 ¼
V2 � R2z6ð Þ C12 þ C22 gm2 � r2z4ð Þ

� �
N2

2

�
r2C22z5z6

C12 þ C22 gm2 � r2z4ð Þ
� � (32)

where bd indicates the equivalent torsional damping, Kt is the
equivalent torsional stiffness, V stands for the supply voltage, x is
the plunger displacement, r indicates the radius of the pinion, C1

and C2 are the reluctances of the magnetic path without air gap
and that of the air gap, respectively, Fm is the motive force, N
stands for the number of coils, i indicates the applied current, gm

is the nominal airgap, J indicates the polar moment of inertia of
the valve’s disk, and R is the electrical resistance of coil.

3 Linear Dynamic Analysis

The linearization method is one of the immediate tools to be
used in determining the stability of the network around multiple
equilibria. The analytical studies of such a six-state system would
be tedious and time-consuming, in particular, in the presence of
enormous parameters and variables. The numerical method is an
optimal approach to calculate the Jacobian matrix shown in Eq.
and subsequently the system’s eigenvalues to judge the stability
around the equilibria. We select two important critical parameters
of the equivalent viscous damping (bdi) and the friction coefficient
of bearing area (li) of both the sets to evaluate their effects on the
stability/instability of the coupled sets

J ¼

0 1 0 0 0 0

1732334 j22 26 �4772 0 0

0 �1:95 �43:17 0 0 0

0 0 0 0 1 0

�1175:93 0 0 1957044 j55 0

0 0 0 �84:26 0 �43:17

2
6666664

3
7777775

(33)

where j22 ¼ �96bd1 � 177:13l1 and j55 ¼ �96:15bd2 �323:71l2.
We then obtain the following characteristic equation based on

bdi and li:

s6 þ Co1s5 þ Co2s4 þ Co3s3 þ Co4s2 þ Co5sþ Co6 ¼ 0 (34)

where

Co1 ¼ 96bd1 þ 96bd2 þ 177l1 þ 323l2 þ 86 (35)

Co2 ¼ 8302bd1 þ 8302bd2 þ 15295l1 þ 27951l2

þ 9245bd1bd2 þ 31125bd1l2 þ 17032bd2l1

þ 57340l1l2 � 3687463 (36)
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Co3 ¼ 187998083bd1 þ 166386463bd2 þ 346333714l1

þ560154376l2 � 798323bd1bd2 � 2687624bd1l2

�1470686bd2l1 � 4951194l1l2 þ 318563300 (37)

Co4 ¼ �16248483272bd1 � 14382603305bd2

�29933270986l1 � 48420274134l2 þ 17233142bd1bd2

þ58016860bdl2 þ 31747229bd2l1 þ 106879785l1l2

þ3383271986600

(38)

Co5 ¼ 350750592245bd1 þ 310477025305bd2

þ646159543021l1 þ 1045247675853l2

�292732345689222 (39)

Co6 ¼ 6319208419510455 (40)

Using the numerical approach, the coupled sets’ normalized
eigenvalues are presented in Fig. 3 revealing an interesting stabil-
ity map by assuming that bdi’s and li’s change equally for a criti-
cal range of 10�8 � bdi ¼ li � 3� 10�1.

Figure 3 shows the instability and stability of the coupled sets
for the ranges of 10�8 � bdi ¼ li � 9� 10�2 and 10�1 � bdi ¼
li � 3� 10�1 by presenting positive and negative real parts of
eigenvalues, respectively. Such a stability map would help us
select some critical values in order to capture practically observed
chaotic and hyperchaotic dynamics.

4 Results

We select two sets of initial conditions for the critical values of
bdi ¼ li ¼ 10�7, based on the stability map shown in Fig. 3, as
follows:

Initial1 ¼ 20 degð Þ 0 0 20 degð Þ 0 0½ �

Initial2 ¼ 2 degð Þ 0 0 2 degð Þ 0 0½ �

Chaotic motions are known to be sensitive to even slight changes
of initial conditions and hence examining different initial condi-
tions potentially serve to characterize the responses obtained. The
first set, Initial1, would be a realistic option for the so-called
“modulating” valves to regulate/reroute flow for many applica-
tions addressed earlier. The second set, Initial2, is chosen to be
close enough to the system’s physically feasible equilibrium point
and also to avoid numerical singularities.

Figures 4(a) and 4(b) show the phase portraits of the coupled
valves for two sets of the initial conditions. Figures 4(a) and 4(b)
reveal coupled chaotic and hyperchaotic dynamics. The hyper-
chaotic attractors by having two or more positive lyapunov expo-
nents [33] are also known to be sensitive to initial conditions, and
subsequently, orbits initiated from two close points move expect-
edly away from each other until the separation reaches the size of
attractor. Some power tools of the nonlinear dynamic analysis
would potentially help us characterize the responses obtained, in
particular, Lyapunov exponents and Poincar�e maps shown in Figs.
5(a)–7(b). A chaotic attractor presents one positive Lyapunov
exponent [33], as shown in Fig. 5(a) (L6 ¼ þ0:1535), indicating
the chaotic motions of the interconnected valves–actuators config-
uration. Figure 5(b) presents two positive Lyapunov exponents
not only for the sudden pipe contraction (h ¼ 90 deg) but also for
a broad spectrum of the approach angles (35 deg � h � 85 deg),
which can be served as a proof of the network’s hyperchaotic dy-
namics. Poincar�e map is another power tool to distinguish among
periodic, quasi-periodic, and chaotic responses. Note that for an n-
dimensional system (n � 3), this tool may not yield a clear nature
of the response to determine whether the motion is chaotic or two-
period quasi-periodic [33]. Although the Lyapunov exponents, as
discussed earlier, would firmly confirm the chaotic and hyper-
chaotic motions of the interconnected actuated valves along with
irregular Poincar�e maps (almost different sets of 635 points) as
shown in Figs. 6(a)–7(b) for each set of the upstream and down-
stream valves and for two sets of the initial conditions.

Figures 8(a) and 8(b) show the total flow loads, the sum of both
the hydrodynamic and bearing torques versus the motive forces
for two initial conditions. The squared areas remarkably magnify
the differences between the chaotic and hyperchaotic responses
of the coupled sets by presenting relatively larger attractor sizes
for the hyperchaotic ones.

Fig. 3 The interconnected sets’ stability map; 1028 £ bdi 5
li £ 931022 and 1021 £ bdi 5 li £ 331021 stand for unstable and
stable domains, respectively

Fig. 4 (a) The coupled sets’ phase portraits for Initial1 and (b) the coupled sets’ phase por-
traits for Initial2
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It is also of a great interest to present the transition from chaos
to hyperchaos, in particular for an interconnected system. Figures
9, 10(a), and 10(b) reveal such a transition. Figure 9 shows a
broad spectrum of Lyapunov exponents versus the equivalent
beqi’s and li’s (as discussed in Sec. 3), which explicitly separates
the chaotic and hyperchaotic domains. The chaotic domain, for
the range of 2� 10�4 � bdi ¼ li � 10�3 by presenting one posi-
tive Lyapunov exponent, is transmitted to the hyperchaotic one
for the range of 10�7 � bdi ¼ li < 2� 10�4, which presents two
positive Lyapunov exponents. As discussed earlier, the attraction
domain of a hyperchaotic response is relatively larger than that of
the chaotic one, as can be observed in Figs. 10(a) and 10(b). Fig-
ures 10(a) and 10(b) present bifurcation diagrams versus the

equivalent beqi’s and li’s for the upstream and downstream valves,
respectively. The larger domains of attractions of the hyperchaotic
responses, for both the valves, are distinguishable with respect to
the chaotic ones. The hyperchaotic and chaotic domains of the
downstream set are expectedly larger than those of the upstream
set.

One of the crucial issues which needs to be investigated is the
effects of dangerous behavior of a valve–actuator set on another
one. Figures 11(a) and 11(b) present this interesting situation in
which the upstream set is assumed to be chaotic by exposing to
the critical values of bd1 ¼ l1 ¼ 10�7, and the downstream set is
operated safely using bd2 ¼ l2 ¼ 10�1, for the second set of ini-
tial condition.

Fig. 5 (a) The Lyapunov exponents for Initial1 and (b) the positive Lyapunov exponents for
Initial2 versus different approach angles (h)

Fig. 6 (a) The poincar�e map for Initial1 of the upstream set and (b) the poincar�e map for Initial1
of the downstream set

Fig. 7 (a) The Poincar�e map for Initial2 of the upstream set and (b) the Poincar�e map for Initial2
of the downstream set
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The hyperchaotic motion of the upstream valve is again
expected to be observed, but another smaller chaotic attractor,
with a positive Lyapunov exponent of L1 ¼ þ0:013, surprisingly
emerges (Fig. 11(a)) which is significantly different from the

previous case of Fig. 4(b). Its Poincar�e map shown in Fig. 12(a)
confirms the chaotic dynamics of the upstream set containing
irregular points but expectedly different from the map presented
in Fig. 7(a). It is of great interest to observe a very weak chaotic
motion of the downstream valve as shown in Fig. 11(b), whereas a
stable response was logically expected to be seen. Figure 12(b) is
the Poincar�e map of the downstream set revealing irregular points
but too close to its equilibrium point. It is fairly straightforward to
conclude that the chaotic motion of the upstream set is transmitted
to the downstream one through the media trapped between them
and subsequently affects its dynamics. Increasing the chaotic
attractor domain of a set would accordingly magnify the domains
of neighbor ones which would gradually cause failure of the
whole network of thousands of valves–actuators. Such failures
have to be avoided to reduce the considerable cost needed to
restore the flow line.

5 Conclusions

This paper represented an interconnected nonlinear model of
two actuators and valves subject to the sudden contraction. These
dependencies among different components were formalized to
yield a sixth-order dynamic model of the whole system. We estab-
lished a stability map to yield a clear picture of stability/instability
of the coupled network for some critical values of the equivalent
viscous damping and the friction coefficient of the bearing area.

The coupled chaotic and hyperchaotic dynamics were captured
and discussed. Some powerful tools of the nonlinear dynamic

Fig. 8 (a) The sum of flow loads versus magnetic force of both the upstream and downstream
sets for Initial1 and (b) the sum of flow loads versus magnetic force of both the upstream and
downstream sets for Initial2

Fig. 9 A broad spectrum of Lyapunov exponents versus the
equivalent beqi’s and li’s revealing transition from chaos to
hyperchaos

Fig. 10 (a) The bifurcation diagram versus the equivalent beqi’s and li’s for the upstream valve
revealing transition from chaos to hyperchaos and (b) the bifurcation diagram versus the
equivalent beqi’s and li’s for the downstream valve revealing transition from chaos to
hyperchaos
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analysis were then employed, including Lyapunov exponents and
Poincar�e map, to characterize the responses obtained. We pre-
sented the expected larger hyperchaotic attractor domains in com-
parison with the chaotic ones. One and two positive Lyapunov
exponents were shown to confirm the chaotic and hyperchaotic
dynamics of the coupled actuated valves, respectively. The irregu-
lar Poincar�e maps were also presented to support both the chaotic
and hyperchaotic dynamics along with the positive Lyapunov
exponents.

The upstream valve–actuator set was intentionally operated
with the same initial condition and critical values of the hyper-
chaotic dynamics to evaluate its effects on a stable downstream
set. The dynamics of the upstream set was surprisingly different
by revealing a chaotic attractor demonstrated by its Poincar�e map
and a positive Lyapunov exponent. The downstream set was also
affected by the chaotic dynamics of the upstream one by showing
the irregular Poincar�e map but too close to its equilibrium point.

We are currently focusing our efforts on developing a compre-
hensive model for n valves and actuators to be operated optimally
and safely in series.
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