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On the Inclusion of Time
Derivatives of State Variables
for Parametric Model Order
Reduction for a Beam on a
Nonlinear Foundation
The computational burden of parameter exploration of nonlinear dynamical systems can
become a costly exercise. A computationally efficient lower dimensional representation
of a higher dimensional dynamical system is achieved by developing a reduced order
model (ROM). Proper orthogonal decomposition (POD) is usually the preferred method
in projection-based nonlinear model reduction. POD seeks to find a set of projection
modes that maximize the variance between the full-scale state variables and its reduced
representation through a constrained optimization problem. Here, we investigate the ben-
efits of an ROM, both qualitatively and quantitatively, by the inclusion of time derivatives
of the state variables. In one formulation, time derivatives are introduced as a constraint
in the optimization formulation—smooth orthogonal decomposition (SOD). In another
formulation, time derivatives are concatenated with the state variables to increase the
size of the state space in the optimization formulation—extended state proper orthogonal
decomposition (ESPOD). The three methods (POD, SOD, and ESPOD) are compared
using a periodically, periodically forced with measurement noise, and a randomly forced
beam on a nonlinear foundation. For both the periodically and randomly forced cases,
SOD yields a robust subspace for model reduction that is insensitive to changes in forcing
amplitudes and input energy. In addition, SOD offers continual improvement as the size
of the dimension of the subspace increases. In the periodically forced case where the
ROM is developed with noisy data, ESPOD outperforms both SOD and POD and
captures the dynamics of the desired system using a lower dimensional model.
[DOI: 10.1115/1.4035759]

1 Introduction

In design engineering or parameter exploration, one needs to
numerically investigate the dynamical system over many combi-
nations of parameters in order to fully understand the dynamics as
the system undergoes design changes (initial conditions, system
parameters, material properties, etc.). This is a tremendous com-
putational task depending on the model nonlinearities and the
scale (number of degrees-of-freedom) of the discretized numerical
representation of the dynamical system. One common approach to
reduce the computational burden is to develop lower dimensional
representations of the higher dimensional full-scale dynamical
system. Depending on the scale and the type of nonlinearity, the
computational burden of the lower dimensional representation can
be reduced by orders of magnitude as compared to the full-scale
dynamic model. Typically, the lower dimensional representation
is achieved by developing reduced order models (ROMs) of the
full-scale dynamic model.

Simulating the full-scale dynamic model at every design config-
uration to create an ROM at that particular design is very ineffi-
cient from a data storage and computational cost perspective. The
idea behind parametric ROMs is to develop an ROM that is valid
over a set of design configurations. The set projection modes that
allow one to transform the high dimensional model to its lower
dimensional representation are determined from the full-scale

dynamic model at one (or several) design configurations. Then,
these projection modes are used to create the ROM at different
designs. As a result, the full-scale dynamic model does not have
to be simulated at this new design.

One of the most common approaches in projection-based
ROMs of nonlinear systems is proper orthogonal decomposition
(POD) [1]. POD determines a set of projection modes that maxi-
mize the variance between the state variables of the reduced repre-
sentation and the dynamical system of interest, in the least squares
sense [2]. POD has several counterparts in other fields; these
include singular value decomposition [3], Karhunen–Loev�e
decomposition in stochastic process modeling [3–5], principal
component analysis in statistical analysis [3,6], and empirical
orthogonal decomposition in atmospheric modeling [7]. Liang
et al. [3] discussed the connection between POD, singular value
decomposition, and Karhunen–Loev�e decomposition. In Ref. [2],
the Galerkin projection procedure was combined with POD, to
generate low dimensional models that have a large phase space.
This methodology has led to the development of low-order models
in natural and engineered systems across many domains, such as
fluid flow [2,8], structural vibrations and chaotic dynamical sys-
tems [1,3,9–12], microelectromechanical systems (MEMS) [13],
and aeroelastic systems [14,15]. POD has also been applied to
mechanical systems that process a significant amount of nonli-
nearity, such as nonlinear panel flutter with thermal effects [16],
acoustostructural coupled systems of elastic multibody systems
[17], and coupled flow problems [18].

There are two common approaches to reduce the complexity of
the nonlinearity before proceeding with POD. One approach is the
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trajectory piecewise-linear (TPWL) approximation [19], which is
based on approximating a nonlinear function by a weighted sum
of linearized models at selected points along a state trajectory.
TPWL has been successfully applied to several nonlinear systems
that are found in circuit simulations and shock propagation [20].
The use of TPWL is hindered due to the difficulty finding a piece-
wise polynomial that is able to approximate general nonlinear
forcing. Alternatively, discrete empirical interpolation method
(DEIM) constructs a separate subspace for the approximation of
the nonlinear term [21,22]. In this approach, a set of interpolation
points are selected via a greedy strategy, and then, the interpola-
tion and projection are combined to approximate the nonlinear
function in the subspace. For highly nonlinear problems, many
DEIM basis vectors may be required to provide an accurate
approximation.

The utilization of additional information in the development of
projection modes leads to the creation of smooth orthogonal
decomposition (SOD). This methodology incorporates the time
derivative of the state variables in the optimization formulation as
a constraint. The aim of SOD is determine a set of projection
modes that maximize the variance between the state variables of
the dynamical system of interest and its reduced representation
while maximizing smoothness in the least squares sense [23]. The
smoothness is introduced as a constraint by requiring the time
derivatives of the state variables to be as smooth in time as possi-
ble, or to minimize the roughness of the time derivatives. In
Ref. [24], SOD was shown to produce comparable results to POD
in estimating modal parameters in undamped, lightly damped, and
distributed-parameter vibration systems. Rezaee et al. [25] used
SOD to derive the modal parameters of a vehicle suspension sys-
tem. In the biomechanics community, SOD was used to extract
smooth trends from multivariate biomechanical data to determine
fatigue markers instead of medical techniques that require inva-
sive physiological measurements [26]. SOD was first introduced
into the fluids community by Kuehl et al. [27], which extracted a
slowly varying Rossby wave in measured ocean currents using
SOD when POD was unable to do so.

Very similar to SOD is state-variable modal decomposition
(SVMD) [28,29], which also solves a generalized eigenvalue
problem of a matrix of state variables and their time derivatives.
In its formulation, a nonsymmetric correlation matrix of state
variables and approximations of time derivatives is used as a con-
straint which closely relates to the formulation of SOD. Due to the
very similar nature of SOD, the method will not be presented in
this paper since the theme of this paper is on the two different
ways to incorporate state variables and their time derivatives into
the optimization formulation—as a constraint or an extension of
the state space. However, SVMD has shown very significant
results in the estimation of modal parameters and compared well
SOD and POD. SVMD was first introduced to estimate the mode
shapes and natural frequencies from a free response of a generally
damped linear multi-degrees-of-freedom system by correlations
of the state-variable ensembles. SVMD was later applied to an
experimental beam for modal parameter estimation of multi-
degrees-of-freedom and continuous systems. As of late, this
method has not been shown how it performs and compares to con-
ventional model reduction methods in creating ROMs at single
operating points or for parametric ROMs.

In Ref. [30], the concept of subspace robustness was presented
which determines whether the subspace used for an ROM will be
insensitive to perturbations of the system parameters and initial
conditions. This concept was further used in Refs. [31] and [32].
The common theme noted earlier is that SOD-based ROM
produces more robust and lower dimensional models than POD-
based ROM. SOD showed continual improvement as the number
of projection modes were increased, whereas POD did not show
continual improvement. In these research efforts, the dynamical
systems of interest were noise free. The contribution of this work
is twofold: (1) extending the state-space by considering the time
derivatives of the state variables in the POD formulation which is

called extended state POD (ESPOD) and (2) comparing all the
three ROM methodologies when measurement noise is added into
the system.

The remainder of the paper is as follows: Sec. 2 defines all the
three model reduction methodologies of POD, SOD, and ESPOD
along with the concept of subspace robustness. In Sec. 3, the
methods are applied to a model of an elastic beam on a nonlinear
foundation. In Sec. 4, we compare the three model reduction tech-
niques, and we conclude in Sec. 5.

2 Model Order Reduction

2.1 Projection-Based Reduced Order Models. Consider the
general form of the nonlinear dynamical system

_y ¼ f ðy; tÞ (1)

where y 2 Rn is a dynamic state variable, f : Rn �R 7!Rn is a
nonlinear flow, t 2 R is time, and n is usually twice the number
of degrees-of-freedom in the system. From the numerical simula-
tion of Eq. (1), the evenly sampled trajectory points can be
arranged in a column matrix Y ¼ ½y1; y2;…; yn� 2 Rm�n and a
matrix of the time derivatives of the evenly sampled trajectory

points _Y ¼ ½ _y1; _y2;…; _yn� 2 Rm�n. Additionally, we concatenate

both matrices such that Y? ¼ ½y1; y2;…; yn; _y1; _y2;…; _yn� ¼ ½Y _Y �
2 Rm�2n. We transform the full-scale dynamical system into a
new basis by an appropriate coordinate transformation. In this
context, the transformation matrix, Pk¼ [e1, e2,…, en], is a matrix
composed of projection modes, feign

i¼1, in its columns whereby
the projection modes are determined from some appropriate
empirical decomposition method (POD, SOD, and ESPOD).

Using the coordinate transformation q ¼ PkY 2 Rk, the corre-
sponding ROM is

_q ¼ P
†

k f ðPkq; tÞ (2)

where (.)† indicates the pseudoinverse of (.).

2.2 Proper Orthogonal Decomposition. POD finds the
sequence of orthonormal projection modes (proper orthogonal
modes (POMs)) fukgn

k¼1 for which the first k of these functions
gives the best possible k-term approximation of Y in the least
squares sense. Mathematically, we express this as a constrained
optimization problem

maxu

Xn

k¼1

jhyk; uij2 s:t: jjujj ¼ 1 (3)

where h�; �i indicates the inner product. The amount of variance
that is captured by each POM is given by its singular value (or
proper orthogonal value (POV)), where

r1 ¼ jjAu1jj � r2 ¼ jjAu2jj � � � � � rk ¼ jjAukjj (4)

In practice, the POMs and POVs are determined by the singular
value decomposition [33], or SVD, of the matrix Y. Mathemati-
cally, this is expressed as

Y ¼ URVT (5)

where U ¼ ðu1; u2;…; unÞ 2 Rn�n is an orthogonal matrix com-
posed of left singular vectors, V ¼ ðv1; v2;…; vmÞ 2 Rm�m is an
orthogonal matrix of right singular vectors (which in this case are
the needed POMs), R 2 Rn�m is a matrix with all the elements
zero except along the diagonal, and (.)T represents the matrix
transpose. The non-negative elements on the diagonal are POVs
and are arranged in decreasing order, i.e., r1> r2, …, rr>¼ 0.
Here, r¼min(n, m).
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2.3 Smooth Orthogonal Decomposition. SOD incorporates
the time derivatives of the state variable as a constraint in the opti-
mization formulation as opposed to the constraint on orthogonally
of projection modes as seen in POD. Similarly to POD, in the
SOD formulation, one tries to maximize the variance while mini-
mizing the roughness (or equivalently, maximize the smoothness).
Now, the constrained optimization problem is written as

max
w

Xn

k¼1

jhyk;wij2 s:t:

min
w

Xn

k¼1

jh _yk;wij
2

(6)

where the SOD-based projection modes (smooth orthogonal
modes—SOMs) are not constrained to be orthogonal with respect
to each other. Following the same procedure as in POD, the
SOMs are typically found by solving the generalized singular
value decomposition (GSVD) [33] of the matrix pair, Y and _Y

Y ¼ UCXT

_Y ¼ VSXT

CTCþ STS ¼ I

(7)

where U2Rm�m;V2Rn�n, and X2Rp�q, and q¼minðmþn;pÞ.
Matrix C2Rm�m and S2Rm�m are the non-negative diagonal

matrices. The squared values of C are CTC¼½a1;…;a2
p� and of S

are STS¼½b1;…;b2
p�, such that STSþCTC¼ I. The ratio k¼a/b

gives the generalized singular values (or smooth orthogonal
values—SOVs) or the term-by-term division of diag(CTC) and
diag(STS). The generalized singular vectors (or smooth orthogonal
modes—SOMs) are given by X.

2.4 Extended State Proper Orthogonal Decomposition.
ESPOD incorporates the time derivatives into the ensemble matrix
and proceeds with the classical POD formulation. Now, the state
space is increased by n. ESPOD finds the sequence of orthonormal
projection modes (extended state proper orthogonal modes—
ESPOMs) f#kgn

k¼1 for which the first k of these functions gives
the best possible k-term approximation of Y? in the least squares
sense. Mathematically, we still have the same constrained optimi-
zation problem as was presented in POD and is depicted below

max
#

Xn

k¼1

jhy?k ; #ij
2

s:t jj#jj ¼ 1 (8)

In practice, the ESPOMs and extended state proper orthogonal
values (ESPOVs) are determined by the SVD of the matrix Y?.
Mathematically, this is expressed as

Y? ¼ ANCT (9)

where A ¼ ða1; a2;…; anÞ 2 Rn�n is an orthogonal matrix com-
posed of left singular vectors, C ¼ ð#1; #2;…; #2mÞ 2 R2m�2m is
an orthogonal matrix of right singular vectors (which in this case
are the needed ESPOMs), N 2 Rn�2m is a matrix with all the
elements zero except along the diagonal, and (.)T represents the
matrix transpose. The non-negative elements on the diagonal are
singular values and are arranged in decreasing order, i.e.,
n1> n2,…, nr >¼ 0. Here, r¼min(n, 2 m).

2.5 Subspace Robustness. The key idea behind subspace
robustness is a quantitative metric that determines whether the
subspace will be insensitive to perturbations of the system param-
eters and initial conditions [30]. If a subspace is insensitive to
these perturbations (e.g., off-design configurations), the subspace

will provide a faithful ROM of the system of interest. Therefore, a
subspace spanned by the projection modes for model order
reduction needs to be insensitive to variations in forcing functions,
initial conditions, and system parameters. Conventional choices
like POMs would be a good choice but they can vary with initial
conditions, system parameters, and forcing functions [34]. There-
fore, a decomposition identifies a robust subspace if all the sub-
spaces estimated from trajectories starting from different initial
conditions and/or perturbed system parameters are mutually and a
linearly dependent.

Given a set of s trajectories from different simulations with var-
ied design configurations, the idea is to find when the angle
between two subspaces is zero. A k-dimensional subspace can be

constructed from determining the projection modes, Pk
i , of the ith

trajectory. If the angle between two subspaces (Pk
i and Pk

j ) is zero,

then the subspaces are linearly dependent or parallel. If the angle
between two subspaces is p/2, then the subspaces are linearly
independent or orthogonal. If the different subspaces are nearly
parallel then the subspace is robust. The set of k-dimensional sub-

spaces fPk
i g

s
i¼1 for the model reduction is estimated from a set of

s different trajectories which correspond to different parameter
configurations, forcing amplitudes, and initial conditions, which

are arranged into a matrix S ¼ ½Pk
1;…;Pk

s �. The k dominant pro-
jection modes are spanned by the K-dimensional subspace of the

matrix S. The corresponding subspace robustness ck
s is given by

the ratio of the sum of the largest Kþ 1 singular values of matrix
S over the sum of all the k singular values

ck
s ¼ 1� 4

p
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼kþ1

r2
i

Xk

i¼1

r2
i

vuuuuuuut

�����������

�����������

(10)

From Eq. (10), it is clear that if all the individual subspace realiza-

tions Pk
i ði ¼ 1;…; sÞ are mutually linearly dependent (ak

ij ¼ 0; 8ij
as well as ri¼ 0 for i¼ kþ 1,…, n), then ck

s ¼ 1 (i.e., S has a rank
k), and if they are mostly mutually linearly independent

(ak
ij � p=2; 8ij; i 6¼ j), then ck

s � 1� 4arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� kÞ=n

p
=p (with

guaranteed ck
s ¼ 1). Therefore, the subspace identified through

some empirical procedure can only be used for model reduction

if its subspace robustness ck
s is close to unity. Otherwise that

subspace may not capture all the needed system dynamics for par-
ticular sets of parameters.

3 Numerical Example

From the perspective of finite element theory for discretized
mechanical systems, Eq. (1) is normal written as

M€x þ C _x þ Kx ¼ Fð _x; x; tÞ (11)

where x 2 Rn is a dynamic state variable, t is time, M; C;
K 2 Rnxn are the global mass, damping, and stiffness matrices,
respectively, and F 2 Rn describes any nonlinear forcing compo-
nents. From Eq. (11), the reduced representation is achieved by
the coordinate transformation of x¼Pq, where q 2 Rk, k	 n is a
reduced state variable, and P¼ [e1, e2,…, en] is an appropriate set
of projection modes obtained through some empirical methods
(e.g., POD, SOD, and ESPOD), the corresponding ROM is

PTMP€q þ PTCP _q þ PTKPq ¼ PTFðP _q;Pq; tÞ (12)

The dynamical system that is presented here can be considered
as a simple system with proportional damping and cubic restoring
forces from the springs. The beam, whose schematic representa-
tion is depicted in Fig. 1, is discretized into nine Euler Bernoulli
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beam elements with two (displacement and rotation) degrees-of-
freedom per node. The first and last nodes experience pinned
boundary conditions. The steady-state simulation trajectory
consisted of 100,000 points with the time-step of 0.007. The
equations of motion describing the dynamics of the beam are
given by an 18-dimensional second-order equation which is
described by Eq. (11), where M � R

18�18 is the global mass

matrix, K 2 R18�18 is the global stiffness matrix, C 2 R18�18 is
the global proportional damping matrix, and Fðy; _y; tÞ can be
decomposed into two terms: namely, fe(t) and fn(y). The nonlinear
foundation is modeled with nonlinear springs, whose nonlinear

force is fnðyÞ ¼ y� 2y3. The external forcing was equally applied
to each node. For periodic forcing, a sine wave feðtÞ ¼ f sin xt
with frequency x¼ 2p was chosen, and the random forcing was
generated by interpolated random sequences.

To generate the data for the subspace robustness, the model
was simulated for 21 different forcing amplitudes which were
evenly spaced between 0.5 and 10.5. For each new set of forcing
amplitudes, ten different initial conditions were used. This
resulted in 210 different simulations. For the cases with additive
noise, normally distributed noise, Nð0; 0:5Þ, is added to the state
variables and the time derivatives of the state variables. It is
assumed in these cases that the noise is the same and known. In
experimental settings, this will probably not be true, however, the
different realizations may be very similar.

4 Results

4.1 Case 1: Periodic Forcing. To quantitatively measure
how well our ROM captures the dynamics as the design configura-
tions change, we use subspace robustness (Eq. (10)). Figure 2
depicts the subspace robustness for the 210 different combinations
of forcing amplitudes and initial energy for the periodic forcing.
For the SOD-based ROM, as the dimension increases the robust-
ness increases monotonically, offering continual improvement

after a two-dimensional subspace. There is a slight decrease in
robustness from a one- to a two-dimensional subspace. The value
reaches unity at a five-dimensional subspace. For both the POD
and ESPOD based ROM, the robustness decreases drastically until
a nine-dimensional subspace and then increases. In ESPOD, there
is an additional decrease in the robustness measure at a 14-dimen-
sional subspace which is not seen in the similar POD-based trend.

Figure 3 qualitatively depicts the results for one particular case.
The projection modes are calculated at one design configuration
(forcing amplitude in these cases). The projections modes are then
used to develop an ROM at a different design configuration (a dif-
ferent forcing amplitude). The projection modes were created
with a forcing amplitude of f¼ 4.0, and the ROM was created at a
forcing amplitude of f¼ 5.5. The phase portrait of the middle
degree-of-freedom of the beam is shown in Fig. 3 (top left) for the
full model at a forcing amplitude of f¼ 5.5. The other subplots in
the figure represent the three model reduction methods, and their
respective titles display the dimension of the ROM. The dimen-
sion is determined by minimizing the difference between the
power spectral density of the full model and the ROM. The SOD-
based ROM is able to produce the dynamics for the system of
interest with a lower dimensional model than both POD and
ESPOD—both of which require a three-dimensional ROM.

Fig. 1 A simply supported beam on a nonlinear elastic founda-
tion where external forcing is applied at each node and the non-
linear foundation is represented by nonlinear springs at each
node

Fig. 2 Subspace robustness for SOD (�), POD ($), and ESPOD
(
) based ROMs for periodic forcing

Fig. 3 Phase space portrait for the forcing amplitude f 5 5.5
(top left) and the resulting SOD, POD, and ESPOD-based phase
portrait

Fig. 4 Energy captured in each subspace for SOD (� � �), POD
(- -), and ESPOD (—)
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Finally, the energy in each subspace is depicted in Fig. 4 for
SOD (� � �), POD (- -), and ESPOD (—) based ROMs. Both POD
and SOD based ROMs are able to capture more energy in the first
two dimensions as compared to ESPOD. However, after a three-
dimensional based ROM, all the three methods are comparable.

4.2 Case 2: Periodic Forcing With Noise. For this case,
measurement noise, Nð0; 0:5Þ, was added to the state variables
and their time derivatives. The projection modes were created
with a forcing amplitude of f¼ 4.0, and the ROM was created at a
forcing amplitude of f¼ 5.5. There is a significant difference in
the SOD and ESPOD based ROM in the subspace robustness as
seen in Fig. 5. For the POD-based ROM, the same type of
behavior is seen with a decrease of robustness until reaching a cer-
tain dimension and then increasing until unity. However, the
SOD-based ROM tracks more closely to the POD-based ROM.
The ESPOD-based ROM is initially at a very low value; however,
it increases monotonically and shows continual over the remain-
ing dimensions and outperforms both POD and SOD.

Figure 6 depicts the individual results for the model at a single
forcing amplitude to qualitatively compare how the incorporation

of the time derivatives of the state variables affects the perform-
ance. With the additive noise in creating the ROM, ESPOD was
able to capture the desired dynamics according to the error metric
with only a four-dimensional ROM. Likewise, it takes a 17-
dimensional SOD-based ROM and a nine-dimensional POD-
based ROM to capture the same dynamics.

As depicted in Fig. 7, the energy in each ROM subspace is very
similar for the first-dimensional subspace; however, the energy
captured in ESPOD-based subspaces greatly increases as the
dimension of the subspace increases. Both POD and SOD based
ROM continue on the same slope indicating that they increase at a
comparative rate.

4.3 Case 3: Random Forcing. Under random forcing, the
sensitivity of each ROM method is similar to the periodic forcing
case as depicted in Fig. 8. SOD-based ROM offers continual
improvement in its ROM and both POD and ESPOD robustness
decreases until a nine-dimensional subspace and then increases to
the seventh dimension where it reaches a value of unity. Interest-
ingly, unlike the periodic case, SOD does not have an initial
decrease in its robustness and ESPOD does not have a decrease at
the seventh dimension.

Fig. 5 Subspace robustness for SOD (�), POD ($), and ESPOD
(
) based ROMs for periodic forcing with normally distributed
noise,N ð0; 0:5Þ

Fig. 6 Phase space portrait for the forcing amplitude f 5 5.5
(top left) and the resulting SOD, POD, and ESPOD based phase
portrait

Fig. 7 Energy captured in each subspace for SOD (� � �), POD
(- -), and ESPOD (—)

Fig. 8 Subspace robustness for SOD (�), POD ($), and ESPOD
(
) based ROMs for random forcing
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Similarly, the projection modes were created with a forcing
amplitude of f¼ 4.0, and the ROM was created at a forcing ampli-
tude of f¼ 5.5. The qualitative results mimic that of the periodic
forcing case as seen in Fig. 9. SOD and POD based ROM are able
to capture the dynamics in the lowest dimensional subspace, and
ESPOD requires an additional dimension to capture the same
dynamics. Finally, the energy in each subspace is depicted in
Fig. 10 for SOD (� � �), POD (- -), and ESPOD (—) based ROMs.
Both POD and SOD based ROMs are able to capture more energy
in the first two dimensions as compared to ESPOD. However,
after a three-dimensional ROM, all the three methods are
comparable.

5 Discussion

The purpose of this paper was to compare and contrast the
effects of including the time derivative of the state variables into
the optimization formulation that is used in the model reduction
formulation. In the formulation for SOD, time derivatives were
incorporated as a constraint in the optimization formulation. In
the formulation of ESPOD, time derivatives are used in conjunc-
tion with the state variables and solve the same optimization

problem that is formulated for POD. The dynamical system that is
used is of a pinned–pinned beam that rests on a nonlinear founda-
tion. The beam is forced both periodically and randomly. For the
periodic forcing case, we also consider additive measurement
noise in the state variables and their time derivatives. The noise
for both the state variables and their time derivatives was the
same. Under certain conditions, this may be true in experimental
settings, however, under other conditions, the noise will not be the
same—maybe similar. The springs that are used to represent the
nonlinear foundation are modeled by a nonlinear cubic restoring
force. Therefore, it should just be noted that the results drawn
from this work cannot be taken on the premise that it will work
under every condition. A more formal mathematical framework
needs to be completed in order to make that claim.

For parametric ROMs, the goal is to create the ROM for the
system under a certain set of parameters and have the ROM be
valid if those system parameters change. An ROM that is insensi-
tive to parameter changes, or design configurations, is said to be
robust. Utilizing the metric of subspace robustness, the sensitivity
to changes in forcing amplitudes and initial conditions (i.e., input
energy) is quantitatively assessed. A total of 210 different combi-
nations were used for all the three cases, and it was observed that
under periodic and random forcing, SOD-based ROMs create a
subspace that is insensitive to parameter changes. As the dimen-
sion of the subspace increases, the accuracy of the ROM will con-
tinually increase. When measurement noise was included, ESPOD
outperformed both SOD and POD based ROMs. In POD and
ESPOD, there is a significant decrease in the robustness before it
increases. This is seen in the first two cases with SOD in the first
dimension. In POD and ESPOD, it is speculated that this is due to
orthogonality constraint of the modes. However, SOD does not
have this constraint, yet it was still observed—but not as serve.
More investigation needs to be carried out to understand the dif-
ferences in modes between the three methods.

From a qualitative perspective, SOD-based ROMs were able to
capture the dynamics using a lower dimensional subspace than
both POD and ESPOD for the periodic and random forcing case
with no measurement noise. When measurement noise was added
into the periodic forcing case, ESPOD significantly outperformed
both SOD and POD based ROM. In fact, an SOD-based ROM
dimension was almost equal to the dimension of the full-scale
model so very little benefit was observed. POD-based ROM was
able to capture the dynamics in about half the number of dimen-
sions that SOD needed but still far greater than the number of
dimensions that ESPOD needed.

These results compare well with the energy captured in each
subspace. Again, for both periodic and randomly forced cases
with no measurement noise, SOD and POD were able to capture
the same about of energy in its subspace. This aligns well with the
phase portrait results that were roughly the same size dimensional
ROM, which was needed to capture the dynamics. However, in
the periodic forcing case with measurement noise, ESPOD
captures significantly more energy in each dimensional subspace
than its counterparts of POD and SOD.

The phase portraits add a visual means for understanding
the complex dynamics that these methods are able to capture.
However, in a realistic scenario they may not be needed. The
robustness measure is going to give insight into how well the
model reduction approach is suitable for capturing the dynamics
at different design configurations. Additionally, this measure can
be used to determine the extents of how the model reduction
method performs in the parameter space as that parameter space is
increased. When the robustness is not close to unity at the full
dimension of the model, the calculated projection modes are no
longer capturing the nonlinear manifold and the dynamics are
being missed. At a single design configuration, the energy in each
subspace can be used because it allows one to see how much of
the energy is being captured from more than just the phase por-
traits which can elude someone if there are slight changes that are
not easily noticeable.

Fig. 9 Phase space portrait for the forcing amplitude f 5 5.5
(top left) and the resulting SOD, POD, and ESPOD based phase
portrait

Fig. 10 Energy captured in each subspace for SOD (� � �), POD
(- -), and ESPOD (—)
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6 Conclusion

Proper orthogonal decomposition is a projection-based reduced
order modeling technique that determines an optimal set of
projection modes that maximize the variance between the state
variables of the reduced representation and the dynamical system
of interest, in the least squares sense. In the optimization formula-
tion, the projection modes are constrained to be orthogonal to
each other. Here, we introduce time derivatives of the state varia-
bles into the optimization problem for the development of ROMs
of parametric dynamical systems. First, the time derivatives are
introduced as a constraint in the optimization formulation—SOD.
Second, the time derivatives are concatenated with the state varia-
bles to increase the size of the state space in the optimization
formulation—ESPOD. The three methods (POD, SOD, and
ESPOD) are compared and contrasted using a periodically, peri-
odically forced with measurement noise, and a randomly forced
beam on a nonlinear foundation. When no measurement noise is
included in the data, SOD will give the lowest dimensional ROM
to capture the dynamics of the system. When measurement noise
is present in the data, ESPOD is the preferred choice and will cre-
ate the lowest dimensional ROM needed to capture the dynamics.
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Nomenclature

u ¼ POMs
Y ¼ matrix of state variables
yk ¼ kth column of the state-variable matrix Y
_yk ¼ time derivative of the kth column of the state-variable matrix

Y
Y? ¼ matrix of state variables and their time derivatives
ck

s ¼ subspace robustness
y?k ¼ kth column of the state and time derivative variable matrix

Y?

k ¼ SOVs
n ¼ ESPOVs
r ¼ POVs
w ¼ SOMs
# ¼ ESPOMs
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