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An Adaptive Centralized
Approach to Control Chaotic and
Hyperchaotic Dynamics of Smart
Valves Network
Catastrophic chaotic and hyperchaotic dynamical behaviors have been experimentally
observed in the so-called “smart valves” network, given certain critical parameters and
initial conditions. The centralized network-based control of these coupled systems may
effectively mitigate the harmful dynamics of the valve-actuator configuration which can
be potentially caused by a remote set and would gradually affect the whole network. In
this work, we address the centralized control of two bi-directional solenoid actuated but-
terfly valves dynamically coupled in series subject to the chaotic and hyperchaotic
dynamics. An interconnected adaptive scheme is developed and examined to vanish both
the chaotic and hyperchaotic dynamics and return the coupled network to its safe domain
of operation. [DOI: 10.1115/1.4037593]

1 Introduction

Dangerous dynamical behaviors of multidisciplinary systems,
in particular the electromechanical ones, need to be controlled in
order to avoid the expected failure of the large-scale network. The
so-called smart valves network, containing many interconnected
electro-magneto-mechanical-fluid components, plays an important
role in proper and efficient performance of many critical infra-
structures which include, but are not limited to, municipal piping
systems, oil and gas fields, petrochemical plants, and the U.S.
Navy. The latter utilizes a distributed flow control system for
cooling purposes, and therefore, the failure of such a crucial unit
would expectedly impose considerable costs of restoration and
operation. A robust control scheme is, hence, required to mitigate
the effects of the harmful dynamic responses in the presence of
uncertainties involved with such a large-scale network.

We have reported broad analytical and experimental studies
[1–13] for both an isolated actuator-valve arrangement and a net-
work of two interconnected solenoid actuated butterfly valves
operating in series. A novel third-order nondimensional analytical
model of the single solenoid actuated butterfly valve was derived
dealing with the coupled nonlinear magnetic, hydrodynamic, and
bearing torques [8]. We then could capture transient chaotic and
crisis dynamics of the isolated set [6,13] by exposing the actuator-
valve system to the critical values of nondimensional magnetic
force’s coefficient and equivalent viscous damping. Such a nonlin-
ear analysis led us to determine the bounds needed to operate the
system within a safe domain. These bounds helped us optimize
the isolated set design and then operation by yielding upward of
40% energy savings [5].

The isolated analysis could expectedly provide an insightful prac-
tice to thoroughly understand the undergoing physics of the system.
Although the results of such an analysis could be improved consid-
ering the interconnections among the neighbor sets, we have devel-
oped a nonlinear coupled model of two actuator-valve sets
operating in series without the pipe contraction [4]. A periodic noise
was intentionally applied on the upstream valve to examine its
effects on the downstream set of valve-actuator. A powerful tool of

the nonlinear analysis, the power spectrum, was used in revealing
the same oscillation frequency of the downstream set with that of
the upstream one but with smaller amplitudes. We have also
reported the nonlinear analytical model of two interconnected sets
subject to the pipe contraction in Refs. [1,2,9,12].

The coupled design optimization was then carried out for the
interconnected sets using global optimization tools [2,11,12],
which yielded upward of 13% energy savings. A constrained opti-
mization problem was solved with respect to the parameters’
bounds determined through the nonlinear dynamic analysis [1,3].
We, for the first time, captured chaotic and hyperchaotic dynamics
of the coupled sets for some critical parameters and initial condi-
tions. Some powerful tools of the nonlinear analysis, including the
Lyapunov exponents and Poincar�e map, were utilized in charac-
terizing the responses coupled in various aspects. One and two
positive Lyapunov exponents confirmed the chaotic and hyper-
chaotic dynamics of the network of actuators-valves, respectively.
We have also presented bifurcation diagrams to reveal the transi-
tion from the chaotic dynamics to the hyperchaotic one. A larger
domain of attraction was expectedly revealed for the hyperchaotic
response than the chaotic one.

The coupled operational optimization was another important
phase which we have carried out [3] to minimize the lumped
energy consumption. The stability analysis reported in Ref. [1]
yielded the safe domain of operation. The safe domain of opera-
tion helped us carry out a constrained operational optimization by
fitting nonlinear trajectories to the valves’ stable motions. The
coefficients of the trajectories fitted were then optimized examin-
ing four global optimization schemes to avoid being trapped in
several possible local minima. The local and global design sensi-
tivity analyses were also performed to examine the sensitivity of
the cost function defined to the optimization variables. The step
size analysis yielded an optimal step size to significantly reduce
both the computational cost (iteration) and time. The effects of the
pipe contraction angle (approach angle) on the amount of energy
saved were then studied. We concluded that the smaller approach
angle yields a higher lumped amount of energy saving.

Finding specific research work to capture and control the cha-
otic and hyperchaotic dynamics of such a multiphysics network is
somewhat difficult, although some efforts have been reported for
similar case studies. Chang-Jian [14] have studied gear dynamics
with turbulent journal bearings mounted hybrid squeeze film
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damper. In order to avoid the nonsynchronous chaotic vibrations,
they utilized an increased proportional gain Kp¼ 0.1 to control
this system. It was shown that the pinion trajectory will leave cha-
otic motion to periodic motion in the steady state under control
action. Morel et al. [15] proposed a new nonlinear feedback,
which induces chaos and which was able at the same time to
achieve a low spectral emission and to maintain a small ripple in
the output. The design of this new and simple controller was based
on the propriety that chaotified nonlinear systems present many
independent chaotic attractors of small dimensions. Chen and Liu
[16] investigated chaos control of fractional-order energy
demand-supply system by two different control strategies: a linear
feedback control and an adaptive switching control strategy via a
single control input. Some other efforts related to the chaos con-
trol can be found in Refs. [17–28].

The last phase of this research effort is nonlinear control of the
network subject to the chaotic and hyperchaotic dynamics which
we have previously captured. We here briefly represent the inter-
connected analytical model of two sets (for completeness) along
with the critical initial conditions and parameters resulted in the
dangerous responses. The coupled adaptation and control laws
will be formulated with respect to the interconnected dynamics of
the system. The results will be thoroughly discussed to address the
robustness of adaptive scheme for vanishing the chaotic and
hyperchaotic dynamics.

2 Mathematical Modeling

The system, which is being considered here, is two bi-
directional solenoid actuated butterfly valves operating in series.
The system undergoes a sudden pipe contraction as shown in Fig.
1. The plungers are connected to the valves’ stems through the
rack and pinion arrangements yielding kinematic constraints.

We have previously derived the interconnected analytical
model of two sets operating in series [1,2,9,12] and briefly repre-
sent here for completeness. Some simplifying assumptions have
been made to develop the analytical formulas of the coupled sets.
The first one is to assume a negligible magnetic “diffusion time”
with respect to a nominal operation time (40 s). Note that the

diffusion time has an inverse relationship with the amount of cur-
rent applied. The second assumption is the existence of laminar
flow. We have carried out experimental work for an isolated set to
validate the assumption of laminar flow. The total flow loads,
including hydrodynamic (Th) and bearing (Tb) torques, were
measured experimentally for the inlet velocity of v � 2:7 m=s and
valve diameter of Dv¼ 2 in to be compared with the analytical
formulas. An acceptable consistency was observed between the
analytical and experimental approaches [29].

As can be observed in Fig. 1(b), the valves are modeled as
changing resistors

Rn1 a1ð Þ ¼
e1

p1a3
1 þ q1a2

1 þ o1a1 þ c1

� �2
(1)

Rn2 a2ð Þ ¼
e2

p2a3
2 þ q2a2

2 þ o2a2 þ c2

� �2
(2)

where Rn1 and Rn2 indicate the resistances of the upstream and
downstream valves, respectively, and e1¼7:2�105;p1¼
461:9; q1¼�405:4; o1¼�1831; c1¼2207; e2¼4:51�105; p2¼
161:84;q2¼�110:53; o2¼�695:1, and c2¼807.57 for two dif-
ferent valves’ diameters. Also the flow between the valves in addi-
tion to the sudden contraction are modeled as constant resistors
based on the Hagen–Poiseuille and Borda–Carnot formulas
[30,31]

RL1 ¼
128lf L1

pD4
v1

(3)

RL2 ¼
128lf L2

pD4
v2

(4)

Rcon ¼
8Kcon

p2D4
v2

(5)

where Kcon ¼ 0:5ð1� b2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ðh=2Þ

p
, b indicates the ratio of

minor and major diameters ðDv2=Dv1Þ, h is the angle of approach
(the pipe contraction angle), lf stands for the fluid dynamic vis-
cosity, Dv1 and Dv2 are the upstream and downstream valves’
diameters, respectively, L1 and L2 indicate the pipe lengths before
and after contraction, and RL1 and RL2 are the constant resistances.
Therefore, two valves operating in series can be modeled as a set
of five resistors leading us to derive mathematical expressions of
the pressures after and before the upstream and downstream
valves, respectively, as follows [1,2,9,12]:

P1 ¼
Rn2Pin þ Rn1Pout þ Rn1 RL1 þ RL2 þ Rconqvð Þqv

Rn1 þ Rn2ð Þ (6)

P2 ¼
Rn2Pin þ Rn1Pout � Rn2 RL1 þ RL2 þ Rconqvð Þqv

Rn1 þ Rn2ð Þ (7)

where qv is the volumetric flow rate. These interconnected pres-
sures were used in developing both the coupled hydrodynamic
and bearing torques [1,2,9,12]

Th1 ¼ a1a1eb1a1:1
1 � c1ed1a1

� �
Pin � P1ð Þ

¼ a1a1eb1a1:1
1 � c1ed1a1

� �
�

e1

p1a3
1 þ q1a2

1 þ o1a1 þ c1

� �2

X2

i¼1

ei

pia3
i þ qia2

i þ oiai þ ci

� �2

� Pin � Pout � RL1 þ RL2 þ Rconqvð Þqvð Þ (8)

Fig. 1 (a) A schematic configuration of two bi-directional sole-
noid actuated butterfly valves subject to the sudden contrac-
tion and (b) a coupled model of two butterfly valves in series
without actuation
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Th2 ¼ a01a2eb0
1
a1:1

2 � c01ed0
1
a2

� �
P2 � Poutð Þ

¼ a01a2eb0
1
a1:1

2 � c01ed0
1
a2

� �
�

e2

p2a3
2 þ q2a2

2 þ o2a2 þ c2

� �2

X2

i¼1

ei

pia3
i þ qia2

i þ oiai þ ci

� �2

� Pin � Pout � RL1 þ RL2 þ Rconqvð Þqvð Þ (9)

Tb1 ¼ C1DP1ðRn1;Rn2;RL1;RL2;RconÞ (10)

Tb2 ¼ C2DP2ðRn1;Rn2;RL1;RL2;RconÞ (11)

where a1¼0:4249; a01¼0:1022; b1¼�18:52; b01¼�17:0795; c1¼
�7:823�10�4; c01¼�2�10�4; d1¼�1:084; d01¼�1:0973; C1¼
C2 ¼0:5AdlDs;DP1¼Pin�P1;DP2¼P2�Pout, and Pin and Pout

are the given inlet and outlet pressures, respectively. Note that Ds

is the stem diameter of the valve and l stands for the friction coef-
ficient of the bearing area. We have previously established that
the hydrodynamic torque acts as a helping load pushing the valve
to be closed and is typically effective for when the valve angle is
lower than 60deg [2,4]; the effective range was experimentally
examined [4] confirming the helping behavior of the hydrody-
namic torque by presenting positive values. The bearing torque,
due to its friction-based nature, always acts as a resisting load.

Based on the analytical formulas addressed earlier, the sixth-
order interconnected dynamic equations of two bi-directional sol-
enoid actuated butterfly valves were developed as follows:

_z1 ¼ z2 (12)

_z2 ¼
1

J1

r1C21N2
1z2

3

2 C11 þ C21 gm1 � r1z1ð Þ
� �2

� bd1z2 � k1z1

"

þ

Pin � Pout � RL1 þ RL2 þ Rconqvð Þqvð Þe1

p1z3
1 þ q1z2

1 þ o1z1 þ c1

� �2P
i¼1;4

ei

piz3
i þ qiz2

i þ oizi þ ci

� �2

� a1z1eb1z1
1:1 � c1ed1z1

� �
� C1 � tanh Kz2ð Þ

h i#
(13)

_z3 ¼
V1 � R1z3ð Þ C11 þ C21 gm1 � r1z1ð Þ

� �
N2

1

� r1C21z3z2

C11 þ C21 gm1 � r1z1ð Þ
� � (14)

_z4 ¼ z5 (15)

_z5 ¼
1

J2

r2C22N2
2z2

6

2 C12 þ C22 gm2 � r2z4ð Þ
� �2

� bd2z5 � k2z4

"

þ

Pin � Pout � RL1 þ RL2 þ Rconqvð Þqvð Þe2

p2z3
4 þ q2z2

4 þ o2z4 þ c2

� �2P
i¼1;4

ei

piz
3
i þ qiz2

i þ oizi þ ci

� �2

� a01z4eb0
1
z4

1:1 � c01ed0
1
z4

� �
� C2 � tanh Kz5ð Þ

h i#
(16)

_z6 ¼
V2 � R2z6ð Þ C12 þ C22 gm2 � r2z4ð Þ

� �
N2

2

� r2C22z5z6

C12 þ C22 gm2 � r2z4ð Þ
� � (17)

where bdi indicates the equivalent torsional damping, ki is the
equivalent torsional stiffness, Vi stands for the supply voltage, ri

indicates the radius of the pinion, C1 and C2 are the reluctances of
the magnetic path without air gap and that of the air gap, respec-
tively, Ni stands for the number of coils, gmi is the nominal air
gap, Ji indicates the polar moment of inertia of the valve’s disk,
and Ri is the electrical resistance of coil. z1 ¼ a1; z2 ¼ _a1, and
z3¼ i1 indicate the upstream valve’s rotation angle, angular veloc-
ity, and actuator current, respectively. z4 ¼ a2; z5 ¼ _a2, and
z6¼ i2 stand for the downstream valve’s rotation angle, angular
velocity, and actuator current, respectively. The network parame-
ters are listed in Table 1.

Note that we could capture, for the first time, the coupled cha-
otic and hyperchaotic dynamics of the interconnected sets [1] by
examining the critical values of bdi ¼ li ¼ 1� 10�7 for two dif-
ferent initial conditions of Initial1 ¼ ½20ðdegÞ 0 0 20ðdegÞ 0 0� and
Initial2 ¼ ½2ðdegÞ 0 0 2ðdegÞ 0 0�, respectively. Shown in Figs.
2(a) and 2(b) are the chaotic and hyperchaotic dynamics of the

Table 1 The system parameters

q 1000 ðkg=m3Þ v 3 m=s
J1,2 0:104� 10�1 kg m2 N2 3300
N1 3300 C11,22 1:56� 106ðH�1Þ
Dv1 0.2032 m Dv2 0.127 m
Ds1,s2 0.01 m Pout 2 kPa
k1,2 60 N�m�1 C21,22 6:32� 108ðH�1Þ
L1 2 m L2 1 m
r1,2 0.05 m h 90 deg
Pin 256 kPa gm1,m2 0.1 m
lf 0:018 kg m�1 s�1 k1,2 1
n1,2 10 bdi¼li 1� 10�7

Fig. 2 (a) The coupled sets’ phase portraits for Initial1 and (b)
the coupled sets’ phase portraits for Initial2
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coupled actuated valves, respectively; the red and blue lines indi-
cate the angular velocities versus rotation angles of the upstream
and downstream valves, respectively. Some powerful tools of the
nonlinear analysis, including the Lyapunov exponents and
Poincar�e map [32], were used in distinguishing among the nature
of harmful responses, as shown in Figs. 3(a)–3(f). One and two
positive Lyapunov exponents along with irregular Poincar�e maps
confirmed the chaotic and hyperchaotic dynamics of the actuated
valves, respectively. Such dangerous responses need to be

vanished using a nonlinear control scheme, due to the nonlinear
and coupled nature of the network, in order to return the intercon-
nected sets to their stable domains. The operationally optimized
valves’ motions, on the other hand, are utilized in the nonlinear
control scheme as desirable trajectories. Based on the inevitable
unknown parameters of such a coupled network, the nonlinear
model-based adaptive scheme looks as an effective approach to be
employed in stabilizing the system subject to the chaotic and
hyperchaotic dynamics.

Fig. 3 (a) The Lyapunov exponents for Initial1, (b) the positive Lyapunov exponents for Initial2 versus different approach
angles (h), (c) the Poincar�e map for Initial1 of the upstream set, (d) the Poincar�e map for Initial1 of the downstream set, (e) the
Poincar�e map for Initial2 of the upstream set, and (f) the Poincar�e map for Initial2 of the downstream set

011002-4 / Vol. 13, JANUARY 2018 Transactions of the ASME



3 Control and Adaptation Laws

The nonlinear model-based adaptive control method [33–35] is
used in stabilizing the unstable system in order to track the desired
trajectories [1,3] defined based on the critical initial conditions as
follows:

adi ¼
p
3

tanh 10�4t3ð Þ þ p
9
; Initial1 (18)

adi ¼
p
3

tanh 10�4t3ð Þ þ p
90
; Initial2 (19)

The so-called “S-Shaped” trajectories are highly energy-efficient
[3] and yield smooth dynamic responses avoiding the repeatedly
observed dangerous phenomenon of “Water Hammering.” The
coupled dynamic Eqs. (13) and (16) can be rewritten as the
following:

J1€a1 þ bd1 _a1 þ k1a1 ¼
r1C21N2

1 i21
2 C11 þ C21 gm1 � r1a1ð Þ
� �2

þ A1Rn1X2

i¼1

Rni

T0h1 � T0b1tanh K _a1ð Þ
� �

(20)

J2€a2 þ bd2 _a2 þ k2a2 ¼
r2C22N2

2 i22
2 C21 þ C22 gm2 � r2a2ð Þ
� �2

þ A1Rn2X2

i¼1

Rni

T0h2 � T0b2tanh K _a2ð Þ
� � (21)

where A1¼ðPin�Pout�ðRL1þRL2þRconqvÞqvÞ; T0h1¼ a1a1eb1a1

1:1� c1ed1a1 ; T0h2¼ a01a2eb0
1
a1:1

2 � c01ed0
1
a2 ; T0b1¼C1, and T0b2¼C2.

Assuming

M1 ¼
2J1 C11 þ C21 gm1 � r1a1ð Þ
� �2

r1C21N2
1

;

M2 ¼
2J2 C21 þ C22 gm2 � r2a2ð Þ
� �2

r2C22N2
2

B1 ¼
2bd1 C11 þ C21 gm1 � r1a1ð Þ

� �2

r1C21N2
1

;

B2 ¼
2bd2 C21 þ C22 gm2 � r2a2ð Þ

� �2

r2C22N2
2

K1 ¼
2k1 C11 þ C21 gm1 � r1a1ð Þ
� �2

r1C21N2
1

;

K2 ¼
2k2 C21 þ C22 gm2 � r2a2ð Þ
� �2

r2C22N2
2

Co1 ¼
2 C11 þ C21 gm1 � r1a1ð Þ
� �2

r1C21N2
1

;

Co2 ¼
2 C21 þ C22 gm2 � r2a2ð Þ
� �2

r2C22N2
2

Equations (20) and (21) can be rewritten as follows:

M1€a1 þ B1 _a1 þ K1a1 ¼ u1þ
A1Co1Rn1X2

i¼1

Rni

T0h1 � T0b1tanh K _a1ð Þ
� �

(22)

M2€a2 þ B2 _a2 þ K2a2 ¼ u2þ
A1Co2Rn2X2

i¼1

Rni

T0h2 � T0b2tanh K _a2ð Þ
� �

(23)

We define the valves’ tracking errors and their first- and second-
time derivatives as the following:

ei ¼ adi � ai; _ei ¼ _adi � _ai; €ei ¼ €adi � €ai; ði ¼ 1; 2Þ

This yields

M1€e1 ¼ M1€ad1 �M1€a1 ¼ M1€ad1 þ B1 _a1 þ K1a1�u1

� A1Co1Rn1X2

i¼1

Rni

T0h1 � T0b1tanh K _a1ð Þ
� �

(24)

M2€e2 ¼ M2€ad2 �M2€a2 ¼ M2€ad2 þ B2 _a2 þ K2a2�u2

� A1Co2Rn2X2

i¼1

Rni

T0h2 � T0b2tanh K _a2ð Þ
� �

(25)

The combined tracking errors [33–35] and their first-time deriva-
tives are as follows:

si ¼ _ei þ kiei; _si ¼ €ei þ ki _ei; ði ¼ 1; 2Þ

where k’s are strictly positive numbers listed in Table 1. Premulti-
plying by M1 and M2 and substituting from Eqs. (24) and (25), we
have

M1 _s1 ¼ M1€ad1 þ B1 _a1 þ K1a1 � u1 �
A1Co1Rn1X2

i¼1

Rni

� T0h1 � T0b1tanh K _a1ð Þ
� �

þM1k1 _e1 (26)

M2 _s2 ¼ M2€ad2 þ B2 _a2 þ K2a2 � u2 �
A1Co2Rn2X2

i¼1

Rni

� T0h2 � T0b2tanh K _a2ð Þ
� �

þM2k2 _e2 (27)

Based on the interconnected dynamics of the network, we chose
the following quadratic Lyapunov function candidate:

V ¼ 1

2

X2

i¼1

sT
i Misi þ ~H

T

i C�1
i

~Hi

� �" #
(28)

where Ci is a symmetric positive definite matrix and ~H i is the sys-
tem’s lumped parameter estimation error ( ~Hi ¼ Hi � Ĥ i). Differ-
entiating the Lyapunov function (Eq. (28)) yields

_V ¼
X2

i¼1

sT
i Mi _si þ

1

2
sT

i
_Misi � ~H

T

i C�1
i

_̂Hi

	 


¼
X2

i¼1

"
sT

i

"
Mi€adi þ Bi _ai þ Kiai � ui �

A1CoiRniX
Rni

� T0hi � T0bitanh K _a ið Þ
� �

þMiki _ei þ
1

2
_Misi

#
� ~H

T

i C�1
i

_̂Hi

#
(29)

By defining the regression vectors as the following:

WiHi ¼ Mi€adi þ Bi _ai þ Kiai �
A1CoiRniX

Rni

� T0hi � T0bitanh K _aið Þ
� �

þMiki _ei þ
1

2
_Misi; i ¼ 1; 2ð Þ

(30)
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The _V can be easily rewritten as follows:

_V ¼
X2

i¼1

½sT
i ½WiHi � ui� � ~H

T

i C�1
i

_̂H i� (31)

The appropriate control inputs are hence chosen as the following:

ui ¼ WiĤi þ nisi; ði ¼ 1; 2Þ (32)

where

WiĤi ¼ M̂i€adi þ B̂i _ai þ K̂ iai �
A1ĈoiRniX

Rni

� T0hi � T0bitanh K _aið Þ
� �

þ M̂iki _ei þ
1

2
_̂Mi si; i ¼ 1; 2ð Þ

(33)

We can easily develop both the regression (Wi 2 <1�17) and esti-
mated lumped parameter vectors (Ĥi 2 <17�1) as shown in the
Appendix.

Substituting the control inputs into Eq. (31) gives

_V ¼
X2

i¼1

sT
i ½WiHi �WiĤ i|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Wi
~H i

�nisi� � ~H
T

i C�1
i

_̂Hi

¼
X2

i¼1

sT
i Wi

~Hi � sT
i nisi � ~H

T

i C�1
i

_̂Hi

¼
X2

i¼1

½sT
i Wi � C�1

i
_̂H

T

i � ~Hi � sT
i nisi (34)

which leads us to develop the following parameters’ adaptation
laws:

_̂Hi ¼ CiW
T
i si (35)

Substituting Eq. (35) into Eq. (34) yields

_V ¼
X2

i¼1

�sT
i nisi � 0 (36)

Based on Eq. (36), we need to prove _V ! 0 as t!1 revealing si

! 0 as t!1, or simply

f _V ! 0) si ! 0g

Since V is positive, Barbalat’s lemma [33–35] confirms that _V
approaches zero if it is uniformly continuous and its time deriva-
tive €V is bounded

f €V is bounded) _V ! 0) si ! 0g

We can easily derive €V as follows:

€V ¼ �2
X2

i¼1

sT
i ni _si (37)

Equation (37) implies

fsi and _si are bounded) €V is bounded) _V ! 0) si ! 0g

Note that V is bounded due to V� 0 and _V � 0 indicating that si

and ~Hi are also bounded. This would, in turn, reveals that ai, _ai,
adi, _adi; €adi ðsi ¼ f ðai; _ai; _adi; adiÞÞ and Ĥ i are bounded. Combin-
ing Eqs. (26), (27), (30), and (32) gives

Mi _si þ ni þ
1

2
_Mi

� 
si ¼ Wi

~Hi; i ¼ 1; 2ð Þ (38)

Note that the bounded ai and _ai result in bounded Mi and _Mi yield-
ing bounded _si due to the bounded si, Wi, and ~Hi. The bounded si

and _si result in the bounded €V and one can easily conclude that _V
and si! 0 as t!1 [33–35]. This obviously indicates that ei and
_ei tend to zero as t!1.

We, hence, guarantee both the global stability of the coupled
network (the boundedness of ai, _ai, and Ĥ i) and convergence of
the tracking errors (ei). We have implemented the formulations,
and adaptation and control laws in MATLAB and captured interest-
ing results.

4 Results

The values of ni used in the coupled control inputs (Eq. (32))
are listed in Table 1 and Ci ¼ diag½10�17�17. Figures 4 and 5 pres-
ent the estimation process of the unknown parameters (H1–H34)
for both the upstream and downstream sets subject to the Initial1

Fig. 4 The parameter estimation for H1–H8 of the upstream set and H18–H25 of the downstream set
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revealing the parameters convergence within the nominal opera-
tion time of 40 s; the Initial1 yielded the coupled chaotic dynam-
ics. The H1–H17 and H18–H34 indicate the parameters of the
upstream and downstream sets, respectively. Note that the initial
values of H1–H34 used in the adaptation laws are 90% of their
nominal values we developed through the Appendix. Such initial
values are intentionally selected to yield meaningful estimated
parameters with respect to the electro-magneto-mechanical-fluid
nature of the network. It is of a great interest to observe that,
despite the dominant chaotic dynamics resulted from the Initial1,
the parameters timely converge, and therefore, we expect to
observe stable operations of both the coupled actuated valves.
Note that this approach, based on the “sufficient richness” condi-
tion [33–35], would not exactly estimate the unknown parameters
such that it expectedly yields values to allow the desired task to
be carried out.

The estimated parameters, based on Eq. (32), would help gener-
ate powerful control inputs, the applied currents of the bi-
directional solenoid actuators (ii), to vanish the chaotic dynamics
of the interconnected sets (Fig. 2(a)) and then drive the coupled
valves to track the desirable trajectories, which we addressed ear-
lier (Eq. (18)). Shown in Fig. 6(a) are the control inputs for both
the upstream and downstream actuators. As expected, the currents
consist of two phases as shown in Fig. 6(a). The first phase, with
oscillatory negative values of the currents, suppresses the coupled
chaotic dynamics due to the Initial1 resulting in downward/
slightly upward motions of the plungers, which would conse-
quently avoid the sudden jumps of the valves. During the second
phase of the control process, the currents gradually take positive

values indicating that the plungers move upward, and therefore,
the valves rotate toward the desirable trajectories.

It is of a great interest to observe that the control input of the
downstream set is remarkably higher than that of the upstream
one, in particular for the first phase of the control process. The
physical interpretation of such higher values of the control input
used in the downstream set can be explained through the effects
of the flow loads acting on the valve, in particular the hydrody-
namic torque

Th2

Th1

/ Dv2

Dv1

	 
3

� cv1

cv2

	 
2

(39)

Tb2

Tb1

/ Dv2cv1

Dv1cv2

	 
2

(40)

where cv1 and cv2 are the upstream and downstream valves’ coeffi-
cients, respectively, (cviðaiÞ ¼ pia3

i þ qia2
i þ oiai þ ci); we have

provided the values of pi, qi, oi, and ci in Sec. 2. We have previ-
ously reported [1–3,9,10,12] that a smaller pipe diameter yields
both the higher hydrodynamic and bearing torques due to the
higher coefficient of the upstream valve than that of the down-
stream one (Eqs. (39) and (40)). From another aspect, the hydro-
dynamic torque is a helping load [1–6,8–13] to close the
symmetric valve whereas the bearing one is a resistance (friction-
based) torque for the valve’s operation. The downstream set with
a smaller pipe diameter, subject to the chaotic dynamics of the
Initial1, undoubtedly needs more suppressing control input to

Fig. 5 The parameter estimation for H9–H17 of the upstream set and H26–H34 of the downstream set
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mitigate the destabilizer effects of the higher hydrodynamic tor-
que acting on the valve. For the second phase of the control pro-
cess, the higher resistance bearing torque acting on the
downstream set inevitably demands slightly higher control input
to push the valve to the desirable trajectory.

Such profiles of the control inputs for both the sets are expected
to be observed for the driving magnetic torques (forces) as

nonlinear functions of the control inputs in addition to the valves’
rotation angles/plungers’ displacements. Figure 6(b) presents the
driving magnetic torques of both the coupled sets in which the
two phases of the control process can be distinguished as we dis-
cussed for the currents. The oscillatory negative values of the
magnetic torques suppress the chaotic dynamics along with miti-
gating the effects of the hydrodynamic torques. The positive

Fig. 6 (a) The control inputs and (b) the magnetic torques

Fig. 7 (a) The valves’ rotation angles, (b) the error signals, and (c) the combined tracking error signals
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magnetic torques (forces) move the plungers upward and subse-
quently, the valves move toward the desirable trajectories. The
higher amount of the driving magnetic torque of the downstream
set, for the second phase of the control process, looks logical to

overcome the higher resistance bearing torque than that of the
upstream one.

Shown in Fig. 7(a) are the upstream and downstream valves’
rotation angles indicating that both the sets track the desirable

Fig. 8 (a) The control inputs and (b) the magnetic torques

Fig. 9 (a) The valves’ rotation angles, (b) the error signals, and (c) the combined tracking error signals
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trajectories (Eq. (18)) by applying the control inputs which
expectedly vanish the coupled chaotic dynamics due to the Ini-
tial1. Both the error (ei) and combined tracking error (si) signals
shown in Figs. 7(b) and 7(c), respectively, converge to zero
revealing that the valves’ angles (ai) tend to the desirable trajecto-
ries (adi) within the nominal operation time.

Figures 8(a) and 8(b) present the control inputs and driving
magnetic torques, respectively, used in vanishing the coupled
hyperchaotic dynamics caused by the Initial2 (Fig. 2(b)). As
expected, the hyperchaotic dynamics of both the sets with the
larger domains of attractions, which we have thoroughly
addressed in Refs. [1] and [3], would require significantly higher
values of the control inputs to be vanished than those of the cha-
otic ones. The considerable control inputs expectedly result in
the higher driving magnetic torques than the ones used in the
network subject to the chaotic dynamics (Fig. 8(b)). The two
phases of the control process, which we discussed for the cha-
otic case, can be observed for the hyperchaotic one such that
the oscillatory negative control inputs/driving magnetic torques
suppress the hyperchaotic dynamics. Note that the boxes shown
in Figs. 8(a) and 8(b) reveal the incremental values of the con-
trol inputs/torques to rotate the valves to the desirable
trajectories.

Shown in Fig. 9(a) are both the upstream and downstream
valves’ rotation angles revealing that the valves’ motions tend to
the desirable trajectories (Eq. (19)). Figures 9(b) and 9(c) pres-
ent the convergence of both the error and combined tracking
error signals to zero, respectively. Consequently, it is straight-
forward to conclude that the adaptation and control laws guar-
antee both the global stability of the coupled network and
convergence of the tracking errors in which we analytically
discussed in Sec. 3.

5 Conclusions and Future Work

In this paper, we represented the interconnected sixth-order
dynamic model of the network of two bi-directional solenoid actu-
ated butterfly valves subject to the sudden contraction. The net-
work undergoes the coupled chaotic and hyperchaotic dynamics
for a set of initial conditions, the Initial1 and Initial2, and critical
parameters. The adaptation and control laws were developed to
vanish the chaotic/hyperchaotic dynamics and then push the
dynamically coupled valves to track the desirable trajectories.

For the initial conditions resulted in the chaotic/hyperchaotic
dynamics, we revealed that the downstream set required the
higher control inputs/driving magnetic torques than those of the
upstream one. The two phases of the control process were also
distinguished to vanish the chaotic/hyperchaotic dynamics in
addition to mitigating the harmful effects of the hydrodynamic
torque (as a helping load) which expectedly magnifies the ampli-
tude of dangerous stochastic oscillation. The first phase by pre-
senting the oscillatory negative control inputs removed the
chaotic/hyperchaotic dynamics. The control inputs of the second
phase gradually took the positive values to push the valves to the
desirable trajectories. The control inputs of the downstream set
were shown to be higher than those of the upstream one, for the
second phase of both the chaotic and hyperchaotic cases, in order
to overcome the higher resistance bearing torque. We have previ-
ously established that the bearing torque of the downstream set
with a smaller pipe diameter is higher than that of the upstream
one.

For the next step, a scalable interconnected dynamic model will
be developed to be used in control of the large-scale networks.
Although adding more agents would potentially increase compu-
tational burden, and therefore, combinatorial computationally effi-
cient centralized schemes would be needed to control the network
in the presence of coupled harmful responses. We would develop
and examine such feasible and computationally efficient control
strategies.

Appendix
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