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ABSTRACT 
In this paper, a model-based control algorithm is 

developed for a solenoid-valve system. Solenoids and butterfly 

valves have uncertainties in multiple parameters in the model, 

which make the system difficult to adjust to the environment. 

These are further complicated by combining the solenoid and 

butterfly dynamic models. The control objective of a solenoid-

valve system is to position the angle of the butterfly valve 

through the electric-driven actuator in spite of the complexity 

presented by uncertainties. The novelty of the controller design 

is that the current source of the solenoid valve from the model 

of the electromagnetic force is substituted for the control input 

in order to reach the set-point of the butterfly disk based on the 

error signals, overcoming the uncertainties represented by 

lumped parameters groups, and a stable controller is designed 

via the Lyapunov-based approach for the stability of the system 

and obtaining the control objective. The parameter groups are 

updated by adaptation laws using a projection algorithm. 

Numerical simulation is shown to demonstrate good 

performance of the proposed approach. 

NOMENCLATURE 

J  = the inertia moment [ 2kgm ] 

gr  = the radius of pinion gear [m] 

m  = the mass of solenoid plunger [kg] 

,1B 2B  = the damping coefficients of the solenoid and 

  butterfly valve [Ns/m], respectively 

k  = the spring stiffness [N/m] 

N  = number of turns of the coil 

R  = the resistance of the coil [ ] 

magF  = the magnetic force [N] 

cF  = the contact force [N] (or the resultant force rF ). 

)(cT  = the hydrodynamic torque coefficient 

bh TT   ,  = hydrodynamic and bearing torques, respectively. 

)(
O

J

V

V
 = the ratio of the jet and the mean flow velocity 

  = the flow density [ 2/ mkg ] 

sD  = stem diameter 

pD  = the pipe diameter [ m ] 

vP  = differential valve pressure 

)(RC  = bearing torque coefficient 

INTRODUCTION 
In order to achieve advanced automation in such 

systems as marine vessels, or ship-based machinery system, 

solenoid actuators and valves are often used because they are a 

critical part of the automation system which increases 

survivability and capability. The electric-driven solenoid-valve 

system and its sophisticated control can provide high levels of 

automation on large systems.  The useful function of the 

solenoid-valve, once an electrical signal (current or voltage) is 

applied|, is to activate a mechanical motion such as 

displacement or rotation via the solenoid magnetic forces and 

torques [4]. The proportional solenoids normally require 

integrated electronics for position sensing in order to 

compensate for mechanical motion and nonlinearities like 

magnetic hysteresis [7].  Hydrodynamic torque of a butterfly 

valve is core knowledge of fluid valve system design [5] and it 

is known that most of the valves in real system have strongly 

nonlinear characteristics between the force and displacement 

[1]. 

The use of an intelligent approach such as robust, 

adaptive, or optimal control of the actuator-valve machinery 

systems will benefit a wide spectrum of nonlinear systems.  

This approach will not only decrease the amount of costs and 

casualties, but also will increase the performance of the 



  

mechatronics system. To investigate the particular application, it 

is important to emphasize the nonlinear dynamic modeling, 

design and analysis, and control of such actuator-valve systems, 

because the accuracy and reliability of these systems depend 

highly on the mathematical system modeling and its validation. 

In [3], the authors developed and analyzed the nonlinear 

dynamic model of a solenoid-valve system.  

This paper will focus on model-based nonlinear 

adaptive control of an actuator-butterfly valve. The solenoid-

valve system is described based on exact model knowledge of 

the system. Figure 1 shows the integrated system, which 

consists of an electric-driven solenoid and a butterfly valve. The 

valve operates by solenoids which use magnetic coil to move a 

solenoid movable plunger connected with the valve stem by 

means of a gear train and linkage. The control input is designed 

by substituting the current signal from the model of the 

electromagnetic force, pulling the plunger, and then controlling 

the angular position of the butterfly valve. The system has 

uncertainties in multiple parameters in the dynamic model, 

which requests the system to continuously adjust to the 

environment and consequently requires adaptation for 

sustainability and capability. The integrated system is highly 

nonlinear in addition to its parameter uncertainties. Hence, an 

adaptive control method is proposed [6] and error signals of the 

set-point trajectory tracking are developed for the solenoid-

valve system. A closed-loop stable controller is designed by 

introducing a Lyapunov-type stability analysis [8] based on the 

above error dynamics of the nonlinear solenoid-valve system, 

which yields a stable system. The numerical results in the 

simulation, which use the exact same controller design, show 

initial verification. Therefore simulation results showed 

"perfect" performance. Unless we use more 

sophisticated/accurate simulation model, or hardware in the 

loop simulation, simulation results don't mean anything. 

MODEL-BASED NONLINEAR SYSTEM 

System Model 
The dynamic equations of motion of the plunger and 

butterfly valve are given by [3] 
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where )(tx  is the displacement of the solenoid plunger and 

)(t  is the closing angle of butterfly disk. Total torque totT  is 

the sum of the hydrodynamic and bearing torques expressed as 

.bhtot TTT   

The hydrodynamic torque is obtained by reviewing three-

dimensional hydrodynamic torque coefficient based on [1], [2] 

as  
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     FIGURE 1. SYSTEM CONFIGURATION 

closing angle ( ) of the butterfly valve. For the bearing 

torque, )(
8

2 


Rvpsb CPDDT  (see [3] for the torque 

coefficients). Solving the two equations in (1) with cF  and 

substituting the magnetic force, magF , into the equation yields 
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where the current rate of the solenoid actuator model, 
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is given in [3] and 

21  and CC  are obtained from [4]. For the subsequent controller 

design, the current source )(2 ti  is substituted for the system 

control input )(tu , then the following equation is obtained: 
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Multiplying eq. (3) with the inverse term of the control input, 
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where lumped expression of the combined parameters are based 

on   due to their combination in the developed system 

matrices.  ni  ,...,,...,, 21 , in which i  is thi  



  

parameter value as shown in the Table 1 and the matrices are 

defined as follows. 
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Error Signals 
The following set-point control approach is used. Let 

)(txd  define the set-point trajectory and then the error can be 

defined as 

              ,e           , xxexxxxe ddd
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where )(txd
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  are the first and second time 

derivatives of dx , and which are assumed to be bounded.  

Pre-multiplying )( te  in the last error signal of (5) with 

 ,xM  yields 
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Substituting  ,xM  in (4) into the above equation produces 
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We define the filtered error signals as 
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Then the time derivative of )(tr is 

                    .eer                        (8) 

Multiplying (8) with   ,xM  and then substituting for 

  )( , texM   in (6) yields 
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where )(
1
2

te
rg

 is added and subtracted for further 

development of the control design based on Lyapunov’s 

method. 

Adaptive Feedback Control 

Let )(tV  be a Lyapunov candidate function 
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where the last term of the Lyapunov candidate function, 

pxpI  is a constant diagonal matrix with the gain value , 

pxpI is a pxp  identity matrix, and the parameter estimation 

error, 
~

, is defined as   ˆ~
 where p is a 

known constant parameter vector and p̂  is the estimated 

constant parameter vector (see TABLE 4 in ANNEX A). 

Differentiating (10) yields 
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in which the error signals of the valve angle, )(te , can be 

defined using the geometric relationship and 
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where the definition of )(tr  in (7) is used in the second row, 

its first term ee
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having the opposite sign because they are scalar since 

.eeee TT    

Then, combining the parameterizable terms produces 
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The control input can be designed, yielding V  to satisfy 

negative definiteness (to be shown later) as 
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where )(tr  is a feedback error term in which 1k  is a positive 

constant as the control gain, )(te  is added to cancel the term 

outside the parenthesis after premultiplying by )(tr , and ̂W  

is defined as 
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Substituting u  in (15) into V  in (13) yields 
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Owing to the subsequent adaptation law, the time derivative of 

)(tV  yields the following upper bound as 
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Remark The control law of (15) ensures the set-point error is 

bounded. Therefore, according to the analysis from (11) to (23) 

and the property of )(tV  and )(tV , it is straightforward to 

make a conclusion that )(tz  is bounded. Thus, 

)( then  and  ),(  ),( tetetr  are bounded. Also 
~

 is bounded 

due to the projection method and the constant known parameter 

of  . Owing to the bounds of )(  ),( tetr in (7), )(te  is 

bounded. Note that all desired trajectories are assumed to be 

bounded. Thus, )( and )( txtx  are bounded due to the bounded 

trajectories of ).(  and  )( txtx dd
  Thus, ,M ,B ,C and D  

matrices in (4) are bounded because  , )(tx  are bounded, 

and also B  and M  are bounded in (11) owing to the bounds 

of )(tx . totT  is bounded because )(t is bounded. Thus, the 

control input )(tu  is bounded due to the boundedness of  . 

This leads the boundedness of )(tx  in the dynamic model eq. 

(4) which also enables the boundedness of )(te  in (5) and 

then, the set-point tracking error )(tr  in (8) is bounded. 

Therefore, we can conclude that all signals are bounded. 

 

Adaptation Laws for Parameter Updates 
The following is assumed to define the upper and 

lower bounds of each unknown parameters 

                   jjj  ˆˆˆ                 (19) 

where j̂  is the estimated constant parameters, j̂ , j̂  are 

unknown lower and upper bounds of the estimated parameters 

as shown in system parameters, respectively, which will be set 

to the amount of percentage of their true values. j
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 vector is 

designed to update using a projection-based algorithm as 

follows 
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SIMULATION RESULTS 
Based on the dynamic model in (4), a typical 

parameter set for this simulation is given by 

TABLE 1. THE LIST OF SIMULATION PARAMETERS 

m  J  gr  ,1B  2B  k  N  R  

0.1 604.1 e  
21 e
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 Numerical simulation is performed to verify the proposed 

controllers with changing parameter values as shown in the 

table. Among the parameter values it can be divided into two 

categories; operational values such as pD  and OV  and 

uncertain values like damping coefficients such as ,1B 2B , and 

 . One of the operational parameter values are evaluated in 

this simulation where the pipe diameter pD  shown in TABLE 1 

is used to vary from 5 inches to 9 inches as follows: 

 ,0.9  ,0.8  ,0.7  ,0.6  ,0.5pD  

and the simulation results are provided here. More simulation 

results will be provided later for the responses of other 

parameters. The amount of variation of the unknown parameter 

sets, the upper and lower bounds, in the adaptive control 

method is 90% of their real values. The real values of the 

hydrodynamic torque coefficient and the ratio of the jet and 

flow velocities for the simulation are given as look-up tables 

which are borrowed from [2]. In TABLE 2 the desired set-point 

distances of the solenoid are given as 

TABLE 2. THE LIST OF DESIRED TRAJECTORIES 

 dx    

Group 1  BteBA 11  85 

Group 2  BteBA 12  82 

Group 3  BteBA 13  81 

Group 4  BteBA 14  80 

Group 5  BteBA 15  75 

where ,0148.01 A ,0143.02 A 0141.03 A  ,0140.04 A  

0134.05 A and .5B The control gains were chosen 

selectively as ,50  01.01 k for all cases. 

 

             FIGURE 2. PLUNGER DISPLACEMENT 

 

           FIGURE 3. VALVE ROTATION ANGLE 

 

              FIGURE 4. CONTROL INPUT 



  

 

 FIGURE 5. THE RATE OF PLUNGER DISPLACEMENT 

 

           FIGURE 6. ELECTROMAGNETIC FORCE 

 

           FIGURE 7. HYDRODYNAMIC TORQUE 

 

 
 

           FIGURE 8. BEARING TORQUE 

 

 

                FIGURE 9. THE TOTAL TORQUE 

 

 

           FIGURE 10. THE RATIO OF VJ/VO 



  

 
 

FIGURE 11. HYDRODYNAMIC TORQUE COEFFICIENTS 

 

    FIGURE 12. PARAMETER ESTIMATES: 109101
ˆ~ˆ   

 

 
 

   FIGURE 13. PARAMETER ESTIMATES: 119110
ˆ~ˆ   

 

the above adaptive control approach shows better results. 

The above adaptive control approach shows better results 

compared to the simulation results obtained from [3] using non-

adaptive method which are shown in Figure 14 and Figure 15, 

 
FIGURE 14. PLUNGER DISPLACEMENT (non-adaptive) 

 

 
FIGURE 15. VALVE ROTATION ANGLE (non-adaptive) 

 

CONCLUSION 
Based on the nonlinear dynamic model of a typical 

solenoid-valve system, an adaptive control approach is 

developed accounting for uncertainties in multiple parameters. 

The parameter estimation for the unknown bounded parameters 

is performed using a projection algorithm. A stable adaptive 

control approach is designed by introducing Lyapunov-type 

stability while obtaining the set-point control. Numerical 

simulation is demonstrated to verify the initial performance of 

the proposed approach. Thus, when compared to the non-

adaptive method showing nonlinear phenomena, the responses 

of the plunger displacement and the valve rotating angle are 

quicker and smoother. Future work will be focused on 

illustrating the results in experiments or hardware in the loop. 



  

APPENDIX A 

Briefly introducing ̂W  in (16) as follows: 

TABLE 3. REGRESSION TERMS 

No. Terms No. Terms 
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TABLE 4. PARAMETER ESTIMATION TERMS 
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