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ABSTRACT
Chilled water systems used in the industry and on board

ships are critical for safe and reliable operation. It is hence im-
portant to understand the fundamental physics of these systems.
This paper focuses in particular on a critical part of the automa-
tion system, namely, actuators and valves that are used in so-
called “smart valve” systems. The system is strongly nonlinear,
and necessitates a nonlinear dynamic analysis to be able to pre-
dict all critical phenomena that affect effective operation and ef-
ficient design. The derived mathematical model includes electro-
magnetics, fluid mechanics, and mechanical dynamics. Nondi-
mensionalization has been carried out in order to reduce the
large number of parameters to a few critical independent sets to
help carry out a broad parametric analysis. The system stability
analysis is then carried out by the aid of the tools from nonlin-
ear dynamic analysis. This reveals that the system is unstable
in a certain region of the parameter space. The system is also
shown to exhibit crisis and chaotic responses; this is character-
ized using Lyapunov exponents and power spectra. Knowledge
and avoidance of these dangerous regimes is necessary for suc-
cessful and safe operation.

INTRODUCTION
Modeling and designing accurate shipboard machinery sys-

tems has received much attention as one of the important chal-
lenges that needs to be overcome for supporting the next gen-

eration Naval machinery automation requirements [1]. Typical
automation systems used in the US Navy consist of actuators,
sensors, controllers, valves, piping, electrical cablingand com-
munication wiring. Many types of actuator-valve systems are in
use [2,3].

In general, these systems are nonlinear and exhibit nonlin-
ear phenomena such as multiple steady solutions, bifurcations,
multi-frequency responses, and chaotic dynamics. All of these
phenomena have been observed in practice but cannot be ex-
plained even qualitatively by traditional linear theoriesused in
engineering practice.

This paper focuses in particular on a critical part of the au-
tomation system, namely, actuator-valve systems that forman
important part of what are termed “smart valve” systems. All
of these systems are nonlinear and need to be analyzed as such.
Nonlinear dynamic analysis of such an interdisciplinary system
is not trivial, but needs to be investigated in order to predict pos-
sible critical phenomena including chaos and its routes.

Specific work related to the system considered here is some-
what difficult to find; however, there has indeed been much re-
search in related areas and is discussed here. Important nonlinear
phenomena in electromechanical systems such as chaos have re-
ceived considerable attention by researchers. Belatoet al.[4] an-
alyzed chaotic vibrations of an electromechanical system which
includes a nonlinear dynamic system consisting of a simple pen-
dulum whose support point is vibrated along a horizontal guide
by a two bar linkage driven by a DC motor with limited power.
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Nonlinear dynamic analysis of a micro electromechanical sys-
tem (MEMS) has been carried out by Xieet al. [5] based on an
invariant manifold method proposed by Boivinet al. [6]. Ge and
Lin [7] have studied dynamical analysis of electromechanical gy-
rostat system subjected to external disturbance.

Chaotic responses are distinguishable by sensitivity to initial
conditions which are examined in this paper. Power spectra and
Lyapunov exponents are also helpful to identify chaotic system
responses since they exhibit a broadband power spectrum, and
one or more positive Lyapunov exponents must be observed [8].

The first part of the paper deals with a high-fidelity mathe-
matical model, and the second part deals with nonlinear dynamic
analysis of the system. This paper follows on the previous work
carried out by the authors [9].

MATHEMATICAL MODELING
The system consists of a solenoid actuator energized by an

electric voltage (DC or AC) which moves a plunger. The plunger
is connected to a butterfly valve through a rack and pinion ar-
rangement as shown in Fig. 1. The magnetic flux generates the
needed electromagnetic force to move the plunger and subse-
quently results in the rotation of the butterfly valve by the cou-
pled rack and pinion mechanism.

An ideal pressure angle is assumed for the rack and pinion
mechanism with an assumption of no backlash of the gears. The
valve controls the flow in a pipe and is hence subject to hydrody-
namic forces.

Electromagnetics
The magnetic force is calculated using the reluctance

method [9] as follows.

Fm =
R2N2i2

2(R1+R2(g0− x))2 (1)

where,g0 indicates the maximum stroke of the plunger,x is the
displacement of solenoid plunger, and,R1 andR2 are the reluc-
tances of the magnetic flux paths. A simple circuit model leads
to the following mathematical model.

di
dt

=
(V −Ri)(R1+R2(g0− x))

N2

−
R2iẋ

(R1+R2(g0− x))
(2)

Fluid Mechanics
Analysis must be done on the hydrodynamic (Th), bearing

(Tb), and seating (Ts) torques as they are highly nonlinear func-
tions affecting the valve rotation angle. The torque terms are
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FIGURE 1. SCHEMATIC MODEL OF THE SYSTEM

given as follows [10–14].

Th =
8ρTcD3

vV
2
0

3π
4

[Ccc(1− sinα)]2
︸ ︷︷ ︸

(
VJ
V0

)2

(3)

Tb =−
π
8

µDsD
2
v∆Psign(α̇) (4)

Ts =CsD
2
v (5)

where,ρ is the fluid density;α is the valve rotation angle;Tc in-
dicates the torque coefficient which can be calculated by a table
look up for various values ofα, based on Computational Fluid
Dynamics calculations, as shown in Fig. 2;Dv is the pipe diam-
eter;V0 indicates the inlet velocity of flow;VJ is the jet velocity;
Ccc is the sum of upper and lower contraction coefficients and is
shown in Fig. 3;Ds is the stem diameter;µ indicates the friction
coefficient of the bearing area;Cs is the coefficient of the seating
area; and,

∆P=
1
2

ρV2
0

(
VJ

V0
−1

)2

(6)
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indicates the pressure drop across the valve.

Dynamics
The dynamical equations of the plunger and butterfly valve

can be written as follows (Fig. 4).

mẍ+ cẋ+ kx= Fm−Fc (7)

Jα̈ +bα̇ = rFc+Th−Tbsign(α̇)−Ts (8)
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FIGURE 4. FREE BODY DIAGRAMS OF THE SOLENOID AC-
TUATOR AND THE BUTTERFLY VALVE

In addition, we have the kinematic constraint between the rack
and the pinion,

x= rα. (9)

Combining Eqs. 1, 3, 4, 5, 7, and 8, one has,
(

mr2+J
)

α̈ +
(

cr2+b
)

α̇ +kr2α =

rR2N2i2

2(R1+R2(g0− rα))2
+

32ρTcD3
vV

2
0

3π[Ccc(1−sin(α))]2

−
π
16

µρDsD
2
vV

2
0 sign(α̇)

(
2

Ccc(1−sin(α))
−1

)2

− CsD2
v (10)

Note thatCcc and Tc are dependent onα. Eqs. (2) and (10)
constitute the third order dynamic model for the system.

NONDIMENSIONALIZATION
In order to reduce the number of parameters, and to perform

a systematic analysis, the nonlinear dynamic equations need to be
nondimensionalized. We define the state vector asx= [α, α̇ , i]T ,
and derive the nondimensionalized state-space equations as fol-
lows.

ẋ1 = x2 (11)

ẋ2 = −x1−2ζx2+
ϑx2

3

(∆1+∆2(γ − x1))
2 +(x1 (β1eax1 +β2))

− sign(x2)(κ1x2
1eκ2x1 +κ3eκ4x1)−

CsD2
v

ω2
n0(J+mr2)

(12)

3 Copyright c© 2011 by ASME



ẋ3 =
(v− x3)(∆1+∆2(γ − x1))

N2 −
∆2x2x3

(∆1+∆2(γ − x1))
(13)

Here,

ωn0 =

√

kr2

J+mr2
;γ =

g0

r
;∆1 =

RR1

ωn0
;∆2 =

RR2r
ωn0

ζ =
(b+ cr2)

2ωn0(J+mr2)
;ϑ =

rR2N2i20R2

2ω4
n0(J+mr2)

The values ofβ1, β2, a, κ1, κ2, κ3 and κ4 are calculated
based on fitting the torques to the following functions with least
square error.

Thnd= β1αeaα +β2α (14)

Tbnd= κ1α2eκ2α +κ3e
κ4α (15)

NONLINEAR ANALYSIS
The model has twelve nondimensional parameters; the anal-

ysis presented in this paper assumes specific values for ten of
them as shown in Table 1; these values are based on realistic pa-
rameter values for an industrial system. Two parameters,ϑ and
ζ are considered to vary over a range of values.

The sign function is replaced by a differentiable function to
make the linearization process easier. A smooth approximation
of the sign function is,

sign(x2)≈ tanh(Kx2) (16)

where,k can be tuned to get a good approximation; we usedk= 1
in this analysis.

The Jacobian matrix for the system can be calculated as fol-
lows.

J =






0 1 0
A0 A1

2ϑx30
(∆1+∆2(γ−x10))2

B0 − ∆2x30
(∆1+∆2(γ−x10))

C0




 (17)

where,

A0 =
2ϑx2

30∆2

(∆1+∆2(γ − x10))3 +β1e
ax10(1+ax10)

TABLE 1. Nondimensional parameters

β1 7×10−4 a 5.2764

β2 0.44 γ 1.8

κ1 1×10−7 κ2 13.62

κ3 −0.5 ζ varies

κ4 −13 ϑ varies

∆1 536

∆2 1×104

+ β2−1 (18)

A1 = −2ζ −K(1− tanh2Kx20)(κ1x2
10e

κ2x10

+ κ3eκ4x10) (19)

B0 = −
∆2(v− x30)

N2 −
∆2

2x20x30

(∆1+∆2(γ − x10))2 (20)

C0 = −
∆1+∆2(γ − x10)

N2 −
∆2x20

∆1+∆2(γ − x10)
(21)

and[x10,x20,x30] is an equilibrium point of the system.
For the linearized system, the characteristic equation be-

comes

s3+

(

2ζ +
∆1+∆2(γ −x10)

N2 +K
(

κ1x2
10e

κ2x10

+ κ3eκ4x10
))

s2+
((

2ζ +K(κ1x2
10eκ2x10 +κ3eκ4x10)

)

×
(

∆1+∆2(γ −x10)

N2

)

+1− (β1eax10(1+ax10)+β2)

)

s

+ A0C0 = 0 (22)

Using Routh-Hurwitz criteria, one is able to judge the system’s
linear stability behavior. The asymptotical stability requirements
of the system can then be determined as follows.

2ϑx2
30∆2

(∆1+∆2(γ − x10))3 +β1e
ax10(1+ax10)+β2 < 1 (23)

4ζ 2(∆1+(γ − x10)∆2)

N2 +
2ζ (∆1+(γ − x10)∆2)

2

N4

+
2ϑx2

30∆2

N2(∆1+(γ − x10)∆2)2 +4ζK(κ1x2
10e

κ2x10κ3eκ4x10)

×
(∆1+(γ − x10)∆2)

N2 +2ζ +K(κ1x
2
10e

κ2x10 +κ3eκ4x10)

×
(∆1+(γ − x10)∆2)

2

N4 +K2(κ1x2
10e

κ2x10 +κ3e
κ4x10)2
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×
(∆1+(γ − x10)∆2)

N2 +K(κ1x
2
10e

κ2x10 +κ3eκ4x10)

> 2ζ (β1eax10(1+ax10)+β2)+K(κ1x
2
10e

κ2x10 +κ3e
κ4x10)

× (β1eax10(1+ax10)+β2) (24)

It can be shown from Eq. 23 that the system reveals an un-
stable response unlessk is large enough which reduce the value
of β2.

Eq. 24 yields a comprehensive relationship to examine the
system stability by varying the critical parameters such asζ
(equal viscous damping) andϑ (magnetic force parameter).

Fig. 5 illustrates the range ofζ vs. ϑ obtained from the cal-
culated stability criteria where the stable and unstable regions can
be distinguished. A confirmation of the stability map is shown in
Fig. 6 revealing the stable behavior of the system forζ = 0.5 and
ϑ = 4.8×105; the system’s unstable behavior can be observed
from Fig. 7 where the response diverges to infinity.
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FIGURE 5. STABILITY MAP IN THE ( ζ AND ϑ ) PARAMETER
PLANE

Next, we investigate the system responses for variations of
ζ andϑ . Shown in Fig. 8 indicates a trapped chaotic motion
between two stable regions using a marginal value ofζ .

The Lyapunov exponents of such a motion shown in Fig. 9
confirm the observed chaotic motion; one positive Lyapunov ex-
ponent is distinguishable. Note that the positive value is not big
enough to yield a chaotic motion forever and its effects finally
will be mitigated by the largest negative value of Lyapunov ex-
ponents (|λ3| ≈ 10|λ1|).

Shown in Fig. 10 is the power spectrum indicating noisy
characteristic typical of chaotic responses for a certain range of
frequencies.

Zeeman [15] defines a catastrophe to be any discontinuous
bifurcation. Abraham and Stewart [16] have been more specific
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FIGURE 6. THE SYSTEM RESPONSE FORζ = 0.5 AND ϑ =
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FIGURE 7. THE SYSTEM RESPONSE FORζ = 0.05 AND ϑ =

1×103

and define blue sky catastrophe - a bifurcation in which an entire
attractor disappears abruptly from the phase portrait as a control
parameterα passes through its critical valueαc; when such a
bifurcation occurs, the dynamical system will make a finite jump
to a remote attractor, or diverge to infinity [17].

A small change in the critical value ofζ (0.133) yields such
a phenomenon (crisis) shown in Fig. 11 where a chaotic attractor
abruptly disappears forζ = 0.1329 and diverges to infinity. It can
also be validated from Fig. 12 where its Lyapunov exponents,
having at least one positive value for a chaotic motion, suddenly
disappear.

CONCLUSION
This paper developed accurate nonlinear dynamic models of

butterfly valves operated by solenoid actuators. Many toolsfrom
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nonlinear dynamic analysis were then utilized to investigate the
system stability and distinguish between the responses fora set
of parameters.

The variations of two critical parameters,ζ andϑ , were then
studied to establish stability regimes and to investigate harmful
nonlinear phenomena such as chaos and crisis.

Lyapunov exponents were calculated displaying one positive
value and the power spectrum showed a noisy nature confirming
the chaotic nature of the response for a certain period of time.
Also observed for some parametric value was a blue sky catas-
trophe phenomenon, which is distinguishable by the disappeared
chaotic attractor and its divergence to infinity when the control
parameter passes through its critical value.

Determining the critical range of these parameters is an im-
portant step that needs to be taken for safe operation of the sys-
tem. Current work is focusing on experimental validation of
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FIGURE 10. POWER SPECTRUM FORζ = 0.133 AND ϑ =

1.48×105
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these theoretical results.
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