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Abstract— In this paper, a novel analytical coupled trajec-
tory optimization of a 7-DOF Baxter manipulator utilizing
Extremum Seeking (ES) approach is presented. The robotic
manipulators are used in network-based industrial units, and
even homes, by expending a significant lumped amount of
energy and therefore, optimal trajectories need to be generated
to address efficiency issues. These robots are typically operated
for thousands of cycles resulting in a considerable cost of
operation. First, coupled dynamic equations are derived using
the Lagrangian method and experimentally validated to exam-
ine the accuracy of the model. Then, global design sensitivity
analysis is performed to investigate the effects of changes of
optimization variables on the cost function leading to select the
most effective ones. We examine a discrete-time multivariable
gradient-based extremum seeking scheme enforcing operational
time and torque saturation constraints in order to minimize
the lumped amount of energy consumed in a path given. The
results are compared with those of a global heuristic genetic
algorithm to discuss the locality/globality of optimal solutions.
Finally, the optimal trajectory is experimentally implemented
to be thoroughly compared with the inefficient one. The results
reveal that the proposed scheme yields the minimum energy
consumption in addition to overcoming the robot’s jerky motion
observed in an inefficient path.

I. INTRODUCTION

Robots are widely utilized in industry due to their reliable,
fast, and precise motions although they are not energy-
efficient and hence consume a significant lumped amount
of energy. The energy consumption and subsequently cost
of operation considerably increase when thousands of robots
are working together, for example in a factory, to carry
out a network-based task for thousands of cycles. Based
on the recent statistics published, industries are among the
largest consumers of energy in which the robots take the
biggest share of consumption. It is worth mentioning that
the robots used in auto industry consume more than half
of the total energy required to produce a vehicle body.
The total mechanical energy consumed by the robot is
expectedly affected by the required torque of each joint in
addition to the joints’ angular velocities. The high level of
energy consumption is typically caused by jerky motions of
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robots. Many research efforts addressed path planning and
minimizing joints’ torques. Some researchers have focused
on path smoothness and/or minimizing the execution time,
which may not necessarily yield a minimal amount of energy
consumption.

Extremum Seeking (ES) is a model-free optimization
approach [1]–[3] for systems with unknown dynamics and
with a measurable output which has been applied to a wide
range of technical applications [4]–[8]. The first proof of
stability for an extremum seeking feedback scheme was
provided by Krstić and Wang [2]. They utilized the tools
of averaging and singular perturbations in revealing that
solutions of the closed-loop system converge to a small
neighborhood of the extremum of the equilibrium map. Note
that the ES approach can yield fast convergence, in spite of
being simple to implement by utilizing iterative (batch-to-
batch) optimization of the cost function. Frihauf et al. [9]
carried out optimization of a single-input discrete-time linear
system using discrete-time ES.

Discrete-time extremum seeking with stochastic pertur-
bation was studied without measurement noise in [10].
Stanković and Stipanović [11] investigated discrete-time
extremum seeking with sinusoidal perturbation including
measurement noise. Liu and Krstić [12], [13] and Choi et
al. [14] employed discrete-time ES for one-variable static
system with an extremum using stochastic and sinusoidal
perturbations, respectively.

Rotea [15] and Walsh [16] studied multivariable extremum
seeking schemes for time-invariant plants. Ariyur and Krstić
[17] investigated, for the first time, the multivariable ex-
tremum seeking scheme for general time-varying parameters.
Li et al. [18] utilized the multivariable ES in optimizing
the cooling power of a tunable thermoacoustic cooler. Other
multivariable ES applications can be found in [19]–[21].

Through this research effort, the time-invariant multi-
variable optimization of all joints’ trajectories is presented
in detail. To the best of our knowledge, the multivariable
ES has not yet been utilized for the minimization of the
energy consumed by robotic manipulators. The contribution
of our work is in employing the multivariable gradient-based
discrete-time ES scheme as follows:

1) The scheme is being numerically applied for a 7-DOF
manipulator and the results implemented experimen-
tally;

2) The scheme’s computational burden is significantly less
than other optimization methods including Genetic Al-
gorithm (GA) which we examine here.

In order to carry out the operational optimization, fourteenth-
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Fig. 1. (a) The 7-DOF Baxter’s arm; The joints’ configuration: (b) sagittal
view; (c) top view

order dynamic equations using the Lagrangian method are
derived. Then, the cost function is formulated as the lumped
amount of mechanical energy consumption enforcing opera-
tional time and torque saturation constraints. The effects of
changes of optimization variables on the cost function are
studied using global design sensitivity analysis in order to
select the most effective ones , and a nominal “S-Shaped”
trajectory is fitted for every joint for a collision-free trajec-
tory given. We utilize both Extremum Seeking and Genetic
Algorithms to improve the dynamic characteristics of the
fitted (nominal) trajectories along with minimizing the en-
ergy consumption. The optimal trajectory is experimentally
implemented and thoroughly compared with the inefficient
one.

II. MATHEMATICAL MODELING

The redundant manipulator, which is being studied here,
has 7-DOF as shown in Fig. 1. The mass, Coriolis, and
gravitational (stiffness) matrices are symbolically derived
using the Euler-Lagrange equation:

D(q)q̈ + C(q, q̇)q̇ + φ(q) = τ (1)

where, q̈ and τ indicate the vectors of angular acceleration
and driving torque of the joints, respectively, and φ(q) is
the gravitational vector φk = ∂P

∂qk
. The robot’s Denavit-

Hartenberg parameters are shown in Table I provided by the
manufacturer. We implemented the symbolic formulations in
MATLAB and obtained the coupled fourteenth-order nonlin-
ear dynamic equations to be used in the optimization process
[22], [23].

III. TRAJECTORY OPTIMIZATION

The undesirable responses can be observed through the
experimental work which we have carried out in our Dy-
namic Systems and Control Laboratory (DSCL) [22], [23].

TABLE I
BAXTER’S DENAVIT-HARTENBERG PARAMETERS

Link ai di αi θi
1 0.069 0.27035 −π/2 θ1
2 0 0 π/2 θ2 + π/2
3 0.069 0.36435 −π/2 θ3
4 0 0 π/2 θ4
5 0.010 0.37429 −π/2 θ5
6 0 0 π/2 θ6
7 0 0.3945 0 θ7

TABLE II
THE RANGES OF JOINTS’ ANGLES (DEGREE)

Joints’s Range Initial End
Name Point Point
S0 -97.5 to 90 -87.0532 -25.6510
S1 -80 to 60 -50.0156 5.0300
E0 -170 to 170 -10.1733 41.0350
E1 0 to 150 20.1435 65.1590
W0 -170 to 170 -30.1357 -85.2770
W1 -90 to 115 9.2920 -46.2050
W2 -170 to 170 -60.0735 12.0360

We observed that the robot collides with other objects close
to the end point making the motion unreliable and inefficient.
This is counted as a harmful dynamical behavior for both
the industrial and home applications. Note that the Baxter,
which is being analyzed here, has been designed for research
purposes and hence has no predefined nominal trajectory.
Therefore, the coupled trajectory optimization of the robot,
as a part of the nonautonomous approach, is a necessity to
be carried out in order to considerably reduce the mechanical
energy consumption along with removing the jerky motions
to avoid such a harmful collision discussed earlier.

The feasible joints’ ranges along with the initial and end
points are listed in Table II. Note that one of the physical
constraints, which needs to be implemented in the optimiza-
tion formulation, is zero angular velocity/acceleration at the
initial and zero angular velocity at the end points, indicating
that the manipulator would remain stationary at those points.

We fit the following nonlinear functions (nominal trajec-
tories) [24]–[27] to the joints’ actual trajectories which are
generated with respect to the initial/end points given in Table
II using the Baxter’s PID controller:

θi(k) = Ai tanh(Bi(k∆t)Ci) +Di i = 1, · · · , 7 (2)

where, k = 0, 1, · · · , N , ∆t indicates constant time step,
tf = N∆t (operation time), and Ai’s, Bi’s, Ci’s, and
Di’s are calculated utilizing the least square method for the
trajectory fitting process listed in Table III. Note that we
discretized the functions due to the discrete-time nature of
the problem.

Note that the Ai’s and Di’s are constant/unique parameters
reported in [22], [23]. The Bi’s and Ci’s are the optimization



TABLE III
THE NOMINAL TRAJECTORIES’ COEFFICIENTS

Joint’s Name A B × 102 C D
S0 61.4022 1.532 2.9430 -87.0532
S1 55.0456 1.489 2.9760 -50.0156
E0 51.2083 1.504 2.9385 -10.1733
E1 45.0155 1.510 2.9712 20.1435
W0 -55.1413 1.490 2.9910 -30.1357
W1 -55.9970 1.513 2.9293 9.2920
W2 72.1095 1.495 2.9382 -60.0735

variables although a crucial issue to address is the number
of parameters expectedly leading to a cumbersome compu-
tational cost. Therefore, the sensitivity of the optimization
process to the variables of Bi’s and Ci’s needs to be carefully
addressed.

We established that [22], [23] the roles of Bi’s are more
drastic than the Ci’s. On the other hand, the effects of
Ci’s are negligible in comparison with those of Bi’s on the
changes of energy consumption. Therefore, all the Bi’s are
logically chosen to be optimized using both the ES and GA.
The Bi’s are optimized subject to the following lower and
upper bounds determined through the constraints:

γ = [B1, B2, B3, B4, B5, B6, B7] (3)
γmin = [68, 69, 68.5, 69, 66.5, 69.3, 69]× 10−4 (4)
γmax =

[1385, 1368, 1372, 1368, 1383, 1390, 1386]× 10−4 (5)

The lower bound indicates the operational time, which
we are willing to keep within tf=8s. Note that decreasing
the lower bound would yield much slower motion which
is not desirable and logical, in particular for the industrial
applications. The upper bound is determined based on the
practical torque saturation issue such that increasing the
upper bound would yield abrupt torques leading to both the
motors’ failures and considerably fast motion.

Therefore, the optimization problem is a constrained one,
enforcing the mentioned lower and upper bounds, with the
following cost function defined as the lumped amount of
mechanical energy consumed in the robot:

minEtot =

7∑
i=1

N−1∑
k=0

|τi(k)θ̇i(k)|∆t (6)

Subject to : The Interconnected Equations &

γmin ≤ γ ≤ γmax

We hence need to optimize seven interconnected variables
using both the ES and GA. One issue to consider is the
small values of the variables resulting in serious numerical
errors. We fixed this problem by conditioning them using a
normalization scheme as follows:

γn = γ × 104 (7)

IV. MULTIVARIABLE OPTIMIZATION USING
GRADIENT-BASED EXTREMUM SEEKING

Our objective is to develop a feedback mechanism mini-
mizing the energy consumed (E), where its nonlinear static
map is known to have an extremum. We utilize the mul-
tivariable extremum seeking scheme [28]–[31], developed
from Krstić and Wang efforts [2], in obtaining optimal
values B∗ = [B∗

1 , · · · , B∗
7 ]T . The extremum seeking scheme

estimates the gradient of cost function defined in addition to
driving it to zero. The gradient is estimated using a zero-
mean external periodic perturbation (or dither signal) and a
series of filtering and modulation operations. The conver-
gence of the gradient algorithm is dictated by the second
derivative (Hessian) of the cost function. The minimizer is
the optimal parameters B∗ obtained by driving the system
with a B(l) = [B1(l), · · · , B7(l)]T to determine the cost
value E(l) and then iterating the discrete-time extremum
seeking to produce the B(l + 1); where l denotes the l-th
iteration of the algorithm [9]. Shown in Fig. 2 is a schematic
of the discrete-time ES algorithm. It is worth mentioning
that the measured output (Fig. 2) passing through a washout
(high-pass) filter (W (z) = z−1

z+h ), by having zero DC gain,
expectedly helps better performance [9], [14]. Note that there
is a map from the Bi’s to the energy consumed (E) through
Eqs. 1, 2, and 12. The extremum seeking-based optimization
shown in Fig. 2 is governed by the following equations:

B̂(l) =
−εK
z − 1

[ζ(l)] (8)

ζ(l) = M(l)
z − 1

z + h
[E(l)] (9)

B(l) = B̂(l) + S(l) (10)

where, B̂(l) = [B̂1(l), · · · , B̂7(l)]T , ε is a small positive
parameter, K is a positive diagonal matrix, and h ∈ (0, 1).
The P (z)[q(l)] denotes the signal in the iteration domain.
The perturbation signals M(l) and S(l) are given by

S(l) =
[
a1 cos(ω1l), · · · , a7 cos(ω7l)

]
(11)

M(l) =
[

2
a1

cos(ω1l − φ1), · · · , 2
a7

cos(ω7l − φ7)
]

(12)

with ak > 0 and the modulation frequencies are given by
ωk = bkπ, where |bk| ∈ (0, 1) is a rational number and
the probing frequencies are selected such that ωi 6= ωj
for all distinct i, j, k ∈ {1, · · · , 7}. Also, phase values
φk are selected such that Re{ejφkW (ejωk)} > 0 for all
k ∈ {1, · · · , 7} [9]. Using the Taylor series expansion of the
cost function around the local minimum B∗ (∇E(B∗) = 0),
the cost function can be written as

E(B) = E(B∗) +
1

2
(B −B∗)TH(B −B∗) (13)

where H is a positive definite Hessian matrix (H := ∂2E
∂B2 ).

Note that cubic and higher order terms are eliminated since
they are negligible for local stability analysis via averaging
[14]. We then define

B̃(l) = B̂(l)−B∗ = B(l)− S(l)−B∗ (14)
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Fig. 2. Discrete-time multivariable gradient-based extremum seeking using
washout filter

TABLE IV
OPTIMAL TRAJECTORIES’ COEFFICIENTS

Joints’s Name Optimized B Optimized B
using ES using GA

S0 0.0078 0.00703
S1 0.0071 0.00700
E0 0.1354 0.1400
E1 0.00703 0.00700
W0 0.01306 0.1398
W1 0.0703 0.0650
W2 0.1222 0.1212

Substituting Eq. 14 into Eq. 13 yields

E(B) = E(B∗) +
1

2
(B̃ + S)TH(B̃ + S) (15)

Eq. 8 can be rewritten as

B̃(l) =
−εK
z − 1

[ζ(l)]−B∗ (16)

which leads to a difference equation:

B̃(l + 1) = B̃(l)− εK[ζ(l)]

= B̃(l)− εKM(l)W (z)[E(l)] (17)

By substituting Eq. 15 into Eq. 17 along with using
averaged system analysis, Frihauf et al. [9] revealed that B̃
locally exponentially converges to an O(|a|)-neighborhood
of the origin through the gradient-based scheme satisfying
the mentioned conditions. Therefore, Ẽ = E − E∗ locally
exponentially converges to an O(|a|2)-neighborhood of the
origin.

V. RESULTS

We used both the analytical (ES) and numerical (GA)
approaches to obtain the optimal values of Bi’s shown in
Figs. 3 and 4, respectively. The optimal values of Bi’s are
listed in Table IV indicating negligible differences between
the methods. It is straightforward to observe that the optimal
values of B1, B2, and B4 shown in Figs. 3(a), 3(b), and
3(d), respectively, are lower than the nominal ones indicating
that their corresponding links move slower than those of the
nominal trajectories. This subsequently leads to a significant
reduction in the energy consumed. Note that the joint S1,
as expected, takes the biggest share of energy consumption
and therefore, its lower angular velocities would lead to a
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Fig. 3. The optimal values of B’s using the ES
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Fig. 4. The optimal values of B’s using the GA

lower amount of the cost function defined. Although, the
optimal values of B3, B5, B6, and B7 presented in Figs.
3(c), 3(e), 3(f), and 3(g), respectively, are higher than those
of the nominal ones resulting in higher angular velocities
of the optimal trajectories than the nominal ones. Shown
in Figs. 5 and 6 are the energy consumptions minimized
using both the ES and GA, respectively. Fig. 5(a) presents
the energy optimization process versus time while the energy
consumed sharply decreases to almost 37 (J) and then
gradually converges to the optimal value of 36.627 (J) (at
t = 84.75s). Shown in Fig. 5(a) reveals that the optimization
of energy consumption fluctuates stochastically, as all the
seven parameters (Bi’s) are oscillating with seven different
frequencies satisfying the mentioned conditions. Therefore,
the value of optimal energy is not transparent to be compared
with that of the GA one. We hence calculated its mean value
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Fig. 5. The (a) actual and (b) mean value of energy optimized using the
ES
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Fig. 6. (a) The energy optimized using the GA and (b) the convergence
history of the GA

over a running average window of one cycle of the specified
fundamental low frequency (Fig. 5(b)) to obtain the amount
of energy saved:

∆EES =

45.34(J)︷ ︸︸ ︷
Enominal−

36.527(J)︷ ︸︸ ︷
Eoptimal

Enominal
× 100 = 19.44% (18)

Shown in Fig. 6(a) is the energy consumption minimized
using the GA, and its best value is 36.631 (J) shown in Fig.
6(b).

∆EGA =

45.34(J)︷ ︸︸ ︷
Enominal−

36.631(J)︷ ︸︸ ︷
Eoptimal

Enominal
× 100 = 19.21%(19)

From another aspect, Fig. 6 presents considerable compu-
tational cost (iterations) of 46400 for the GA which looks
logical with respect to the scale of the coupled dynamic equa-
tions resulting in a significant computational time of 2876s
in comparison with 137s of the ES method. Although Figs.
5 and 6 reveal a negligible difference (less than 1%) for the
energy savings of both the schemes, the ES yields the better
performance. Such a superior performance of the ES can
be justified as follows. The ES carries out optimization by
continuously sliding on the cost function in gradient direction
rather than finding optimal points discretely with a certain
step size of the GA. The actual (inefficient), nominal fitted
to the actual, and optimal trajectories are presented in Fig.
7 revealing the differences expected. Shown in Figs. 7(a),
7(b), and 7(d) indicate that the optimal angular velocities of
joints S0, S1, and E1 are lower than those of the nominal
ones. The joint S0 takes the biggest share [22], [23] among
the other ones to consume the lumped amount of energy and
therefore, its lower angular velocity would lead to a lower
amount of the cost function defined. From another aspect, the
effects of such higher values of the Bi’s (i = 3, 5, 6, 7) can
be visualized in Figs. 7(c), 7(e), 7(f), and 7(g), respectively.
Logically, the smooth optimal trajectories shown in Figs.
7(a)-7(g), in comparison with the actual jerky ones, would
expectedly demand lower driving torques to be used in
the robot operation. We have also carried out experimental
validation of the nonlinear analytical approach examining

0 1 2 3 4 5 6 7 8

Time (Sec)

-90

-80

-70

-60

-50

-40

-30

-20

θ
S
0
(D

eg
re
e)

Actual
Nominal
ES
GA

(a)

0 1 2 3 4 5 6 7 8

Time (Sec)

-60

-50

-40

-30

-20

-10

0

10

θ
S
1
(D

eg
re
e)

Actual
Nominal
ES
GA

(b)

0 1 2 3 4 5 6 7 8

Time (Sec)

-20

-10

0

10

20

30

40

50

θ
E

0
(D

eg
re
e)

Actual
Nominal
ES
GA

(c)

0 1 2 3 4 5 6 7 8

Time (Sec)

10

20

30

40

50

60

70

θ
E

1
(D

eg
re
e)

Actual
Nominal
ES
GA

(d)

0 1 2 3 4 5 6 7 8

Time (Sec)

-90

-80

-70

-60

-50

-40

-30

-20

θ
W

0
(D

eg
re
e)

Actual
Nominal
ES
GA

(e)

0 1 2 3 4 5 6 7 8

Time (Sec)

-50

-40

-30

-20

-10

0

10

θ
W

1
(D

eg
re
e)

Actual
Nominal
ES
GA

(f)

0 1 2 3 4 5 6 7 8

Time (Sec)

-70

-60

-50

-40

-30

-20

-10

0

10

20

θ
W

2
(D

eg
re
e)

Actual
Nominal
ES
GA

(g)

Fig. 7. The actual (inefficient), nominal fitted to the actual, and optimal
trajectories using the ES and GA: (a) S0; (b) S1; (c) E0; (d) E1; (e) W0;
(f) W1; (g) W2
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Fig. 8. The experimental nominal and optimal trajectories using the ES
in sample times of (a) t = 1s, (b) t = 3s, (c) t = 5s, and (d) t = 6s; at t
= 6s the robot’s end effector through the nominal trajectory collides with
another object due to the jerky motion while the optimal one avoids such a
collision throughout the whole operational time. The shadow frames present
the nominal trajectory.

both the actual (inefficient) and optimal trajectories. Fig. 8
presents the experimental work, for sample operation times
of 1s, 3s, 5s, and 6s, revealing smoother motions of the
joints/links for the optimal path than the actual (inefficient)
one. The jerky motion of the actual trajectory caused an
undesirable collision between the robot’s end-effector and
another object at t = 6s, while the optimal one avoids such
a collision throughout the whole operational time. Note that
the shadow motions/frames stand for the actual (inefficient)
operation. In summary, the nominal operation shown in Fig.
8 is considerably faster than the optimal one, expectedly
consumes more energy, and causes the collision at t = 6s.
For the optimal case, the manipulator is fast enough, moves
toward the end point safely, and no jerky motion can be
observed.

VI. CONCLUSION

Through this paper, we presented the interconnected tra-
jectory optimization of a 7-DOF Baxter manipulator using



both the extremum seeking and heuristic based methods to
avoid being trapped in several possible local minima. The
coupled dynamic equations of the robot were derived utiliz-
ing the Lagrangian method and then validated through the
experimental work. We then optimized the joints’ trajectories
to generate smooth paths to avoid being exposed to the
jerky motions of the nominal ones in addition to minimizing
the energy consumption. The design sensitivity analysis was
then carried out to evaluate the effects of changes of the
optimization variables on the cost function defined leading
to select the most effective ones. Based on the sensitivity
analysis, the Bi’s were optimized to considerably decrease
the operation’s energy consumed and also to address the
crucial issue of jerky motion. Finally, the optimal trajectory
was experimentally implemented and compared with the
actual (inefficient) one. The principal results of this research
work can be summarized as follows:
• Using the multivariable discrete-time Extremum

Seeking results in a significant decrease in com-
putational cost, an almost twenty-fold reduction
relative to Genetic Algorithm.

• A considerable amount of energy is saved (upward
of 19%).

• The jerky motion and the subsequent collision
between the robot’s end effector and another object
close to the end point are removed using the
optimal trajectory, which is noted in experimental
results.
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