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ABSTRACT
In this effort, we present novel nonlinear modeling of two

solenoid actuated butterfly valves subject to a sudden contrac-
tion and then develop an optimal configuration in the presence
of highly coupled nonlinear dynamics. The valves are used inthe
so-called “Smart Systems” to be employed in a wide range of ap-
plications including bioengineering, medicine, and engineering
fields. Typically, tens of the actuated valves are instantaneously
operating to regulate the amount of flow and also to avoid proba-
ble catastrophic disasters which have been observed in the prac-
tice. We focus on minimizing the amount of energy used in the
system as one of the most critical design criteria to yield anef-
ficient operation. We optimize the actuation subsystems inter-
acting with the highly nonlinear flow loads in order to minimize
a lumped amount of energy consumed. The contribution of this
work is to include coupled nonlinearities of electromechanical
valve systems to optimize the actuation units. Stochastic,heuris-
tic, and gradient based algorithms are utilized in seeking the op-
timal design of two configurations of solenoid actuated valves.
The results indicate that substantial amount of energy can be
saved by an intelligent design that helps select parameterscare-
fully but also uses flow torques to augment the closing efforts.

1 Introduction
Generally “Smart Systems” have received much attention

for a wide range of applications to be operated efficiently with
respect to the amount of energy used in the actuator units. The

US Navy has particularly focused on developing reliable anden-
ergy efficient systems to minimize the cost of operation and also
to increase crew safety through a stable performance.

Automation systems typically consist of actuators, sensors,
controllers, valves, piping, electrical cabling and communication
wiring. Many types of actuator-valve systems are in use [1, 2].
One of the most critical systems to be utilized in cooling pur-
poses is the so-called “Smart Valve” system. The main objec-
tive of the smart valves is to shut down automatically in caseof
breakage and to reroute the flow as needed.

These sets include many interdisciplinary components inter-
acting with each other through highly coupled nonlinear dynam-
ics. We have previously analyzed a solenoid actuated butterfly
valve dealing with electromagnetics and fluid mechanics [3–6].
High fidelity mathematical models were developed for both the
single and coupled actuated valves. For the single set [3], our
focus was on developing a nonlinear model to analyze the com-
plicated physics of the system to be used in dynamic analysis[4]
and optimization. [5]

We have captured transient chaotic and crisis dynamics of
the single valve actuator for some critical parameters helping to
define the safe domain of operation. Determining the safe op-
erational domain through the stability map helped us define the
lower and upper bounds of the optimization tasks [5] and opera-
tion, which reduced the amount of energy used in the single set.
The first phase was to optimize the system design, particularly
the actuation unit coupled with the mechanical and fluid parts.
We then optimized the valve operation to be closed in an efficient
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fashion yielding the minimum energy consumption. In both the
optimization schemes, the roles of flow torques are important to
help close the valve with minimal energy.

It is of great interest to emphasize that the smart valve sys-
tems contain many of the actuated sets and hence, they would
not be independent of each other. These dependencies have been
observed in the practice and probable malfunction of each set
may expectedly result in the catastrophic behavior of the whole
system. Therefore, we have developed the coupled dynamic
model of two actuated valves operating in series [6]. A peri-
odic noise was applied on the upstream valve to evaluate its ef-
fects on the downstream set of the valve and actuator. A power-
ful tool of the nonlinear dynamic analysis (power spectrum)was
then employed to present the same oscillatory response of the
downstream set with that of the upstream one; as expected, the
downstream set revealed the same frequencies of response with
a smaller amplitude. Any slight dynamic change of the upstream
set, on the other hand, was shown to be effective for the down-
stream set through the media trapped between two valves.

Capturing the coupled dynamics of two actuated valves
would help us optimize the design of both the actuation units
in which an interesting connection can be distinguished between
the currents. The currents are subject to the interconnected flow
torques and pressure drops of the valves. Note that, for the sin-
gle set, we neglected the interactions among the actuators/valves
operating in series although the magnetic parts are remarkably
affected by the dynamics of the neighbor sets [6].

Optimization of solenoid actuators has recently received
some attention. Ju and Woong [7] have focused on the optimal
design of solenoid actuators using a non-magnetic ring. Electro-
magnetic actuator-current development has been carried out by
Hameyer and Nienhaus [8], and Sunget al. [9] studied develop-
ment of a design process for on-off type of solenoid actuators.
Kajima [10] has considered a dynamic model of the plunger type
of solenoids. Karr and Scott [11] utilized the genetic algorithm
to optimize an anti-resonant electromechanical controller oper-
ating in frequency domain. Mahdi [12] carried out optimization
of the PID controller parameters to operate nonlinear electrome-
chanical actuator efficiently. A coupled electromechanical opti-
mization of the cost of high speed railway overheads has been
carried out by Jimenez-Octavioet al. [13]. Nowak [14] has fo-
cused on presenting an algorithm of the optimization of the dy-
namic parameters of an electromagnetic linear actuator operating
in error-actuated control system. Other contributions in design
optimization of electromechanical actuators include [15–21].

This paper begins with a brief nonlinear dynamic model of
the actuators/valves operating in series but slightly different from
the model reported in [6] due to the sudden contraction. In the
practice, multiple contractions and expansions exist through the
pipeline. The coupled modeling and then analysis of these con-
figurations would hence be necessary to capture highly nonlin-
ear mutual interactions among the sets. Then, the optimal de-

sign process is formulated to help select the efficient actuators’
parameters coupled with the electromagnetical, mechanical, and
fluid parts in order to yield an energy efficient system. Most elec-
tromechanical systems used in the flow control lines have been
studied by neglecting the interconnections imposed by other sets.
From another aspect, the linearization method, as one of thesim-
plest practices, is widely being utilized in many of analytical in-
vestigations particularly for the systems with a higher level of
complexity and coupling. The results of both the isolated- and
linearized analyses may expectedly be valid within a narrowdo-
main of operation leading typically to significant inaccuracy and
unreliability of the results. The contribution of this workis to
optimize both the actuated valves dynamically coupled in dif-
ferent aspects while our previous effort [5] was on optimizing
a single unit by neglecting its dynamic coupling with another
set. A considerable amount of energy saving was obtained via
the isolated analysis but would obviously could be affectedby
the dynamic interactions among sets. In this effort, a lumped
cost function will be minimized, with respect to the stability and
physical constraints, using global optimization tools in order to
obtain efficient design and operation of the actuation unitsand
valves, respectively. This would provide an interesting opportu-
nity to utilize the coupled optimization scheme, which is being
developed here, for other large-scale networks including oil and
gas fields, municipal piping systems, petrochemical plants, and
aerospace. The need for optimization clearly exists for such net-
works in order to improve efficiency.

2 Mathematical Modeling
The system being optimized consists of two solenoid actu-

ated butterfly valves operating in series as shown in Fig. 1(a).
The actuators are connected to the valves’ stems through the
rack and pinion arrangements. Applying electric voltages (AC
or DC), the magnetic forces move the plungers and consequently
rotate both the valves to desirable angles. Note that we utilize a
return spring to open the valves; this is a common practice among
manufacturers.

The mathematical modeling of such a coupled system obvi-
ously needs some simplifying assumptions to avoid useless and
cumbersome numerical calculations. The first one is to neglect
the magnetic diffusion. During the diffusion time, there isno
powerful magnetic force to move the plunger and the valve sub-
sequently would not rotate in that time interval. Note that the
diffusion time has an inverse relationship with the amount of cur-
rent [3] such that a large value of the current yields a negligible
diffusion time and vice versa. We apply a current ofi = 13(A)
for both the actuators yielding the diffusion time ofτd ≈ 6(ms)
which can be easily neglected considering the nominal operation
time.

The second assumption is to utilize laminar flow for both
the valves. This is a common practice to avoid the tedious nu-
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FIGURE 1. (a) Two actuated butterfly valves subject to the sudden
contraction; (b) A model of two valves in series without actuation

merical calculations of a turbulent regime and also to develop an
analytical model to be used in the nonlinear dynamic analysis.
The dynamic analysis needs to be done to capture the danger-
ous responses of the system [4]. The validity of laminar flow
assumption needs to be examined particularly with respect to
the amounts of inlet velocity and pipe diameter given in Table
1. Using these values, the Reynolds number indicates the ex-
istence of the turbulent regime and questions the assumption of
laminar flow. We hence carried out experimental work shown in
Fig. 2 to examine the validity of the assumption. Shown in Fig.
3 is the total torque, sum of both the hydrodynamic and bear-
ing ones, for the inlet velocity ofV0 ≈ 2.7

(
m
s

)
and valve diam-

eter ofDv = 2 (inches) revealing an acceptable consistency [22]
among the experimental data and the formula utilized in the an-
alytical studies based on the laminar flow. This also gives us
the confidence to use the analytically (and computationally) de-
rived mathematical expressions for the hydrodynamic and bear-
ing torques. We previously discussed the important roles ofboth
the torques on the dynamic response of a single actuated valve
and subsequently such effects are expected to be observed for

FIGURE 2. The experimental work carried out for a single set

TABLE 1. The system parameters

ρ 1000kg
m3 v 3m

s

µ 0.5 Pin 256(kPa)

J1,2 0.104×10−1(kg.m2) bd1,d2 103 N.m.s
rad

N1,2 3300 C11,12 1.56×106(H−1)

gm1,m2 0.1(m) V1,2 24(Volt)

Dv1 8(in) Dv2 5(in)

Ds1,s2 0.5(in) Pout 2(kPa)

k1,2 60(N.m) C21,22 6.32×108(H−1)

L1 2(m) L2 1(m)

µ f 0.018 (Kg.m−1
.s−1) R1,2 1.8(Ω)

r1,2 0.05(m) θ 90◦

the coupled sets [6].

We modeled the coupled system as two changing resistors
for the opening/closing valves plus three constant ones in the
middle of the valves, shown in Fig. 1(b). Two of the constant
resistors stand for head losses and another one is due to the sud-
den contraction. The inlet and outlet pressures are supposed to be
known. Applying the assumption stated for the dominant laminar
flow, the Hagen-Poiseuille [23] and Borda-Carnot [24] formulas
express the pressure drops between two valves (points 1 and 2):

P1−Pcon1 =
128µ f L1

πD4
v1

︸ ︷︷ ︸

RL1

qv (1)
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FIGURE 3. The experimental and analytical total torques for the inlet
velocity ofV0 ≈ 2.7
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Pcon1−Pcon2 =
1
2

Kconρv2
out (2)

Pcon2−P2 =
128µ f L2

πD4
v2

︸ ︷︷ ︸

RL2

qv (3)

where,µ f is the fluid dynamic viscosity,Dv1 andDv2 stand for
the valves’ diameters,qv indicates the volumetric flow rate,L1

andL2 are the pipe lengths before and after contraction,Pcon1 and
Pcon2 indicate the flow pressures before and after contraction, and
RL1 andRL2 are the constant resistances.Kcon is easily calculated
as follows.

Kcon= 0.5(1−β 2)

√

sin

(
θ
2

)

(4)

where,θ is the angle of approach andβ indicates the ratio of

minor and major diameters
(

Dv2
Dv1

)

. Using the parameters given

in Table 1, we obtainKcon = 0.2562. We rewrite Eq. 2 as the
following:

Pcon1−Pcon2 =
1
2

Kconρv2
out

=
8Kcon

π2D4
v2

ρ
︸ ︷︷ ︸

Rcon

π2D4
v2v2

out

16
︸ ︷︷ ︸

q2
v

= Rconq
2
v (5)

where, Rcon is the resistance due to the sudden contraction.
Adding Eqs. 1,2, 3, and 5 easily yields,

P1−P2 = [RL1+RL2+Rconqv]qv (6)

The valve’s “Resistance (R)” and “Coefficient (cv)” are the most
important parameters of the regulating valves including butterfly
ones. The valve’s resistance and coefficient are nonlinear func-
tions of the valve rotation angle [25]:

Ri(αi) =
891D4

vi

c2
vi(αi)

, i = 1,2 (7)

The pressure drop across the valve is stated as follows [26]:

∆Pi(αi) = 0.5Ri(αi)ρv2 (8)

where,α indicates the valve rotation angle,v is the flow velocity,
andρ stands for the density of the media. Rewriting Eq. 8 yields,

∆Pi(αi) =
π2D4

viv
2

16
︸ ︷︷ ︸

q2
v

8×Ri(αi)ρ
π2D4

vi
︸ ︷︷ ︸

Rni(αi)

= Rni(αi)q
2
v (9)

We established that both the hydrodynamic (Th) and bearing (Tb)
torques [26, 27] are too sensitive to the pressure drop obtained
via Eq. 9 leading us to reformulate them to be stated as follows.

fi(αi) =
16Tci(αi)

3π
(

1− Ccci(αi)(1−sin(αi))
2

)2 (10)

Thi =
16Tci(αi)D3

vi∆Pi

3π
(

1− Ccci(αi)(1−sin(αi))
2

)2 = fi(αi)D
3
vi∆Pi (11)

Tbi = 0.5Ad∆PiµDs =Ci∆Pi (12)

where,µ is the friction coefficient of the bearing area,Ds indi-
cates the stem diameter of the valve,Ci =

π
8 µD2

viDs, andTci and
Ccci stand for the hydrodynamic torque and the sum of upper and
lower contraction coefficients, respectively; they dependon the
valve rotation angle [3].
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The nonlinear dynamic analysis carried out for a set of the
actuator/valve [4] provides the criteria needed to determine the
bounds of the optimization tasks; the stability analysis obviously
needs to be done using an analytical model. The same practice
we would utilize for the coupled system with the aid of fitting
suitable curves oncvi andRni in order to model the system an-
alytically. For our case study ofDv1=8 (in) andDv2=5 (in), the
valves’ coefficients and resistances are formulated as follows.

cv1(α1) = p1α3
1 +q1α2

1 +o1α1+ s1 (13)

cv2(α2) = p2α3
2 +q2α2

2 +o2α2+ s2 (14)

Rn1(α1) =
e1

(p1α3
1 +q1α2

1 +o1α1+ s1)2
(15)

Rn2(α2) =
e2

(p2α3
2 +q2α2

2 +o2α2+ s2)2
(16)

where,e1 = 7.2×105, e2 = 4.51×105, p1 = 461.9, p2 = 161.84,
q1 = −405.4, q2 = −110.53, o1 = −1831,o2 = −695.1, s1 =
2207, ands2 = 807.57. Clearly the mass continuity principle
impliesqin = qout = qv. Rewriting Eq. 9 then yields,

Pin −P1

Rn1(α1)
=

P2−Pout

Rn2(α2)
(17)

Rn1P2+Rn2P1 = Rn2Pin+Rn1Pout (18)

One can easily derive the coupledP1 andP2 terms by combining
Eqs. 6 and 18 as follows:

P1 =
Rn2Pin +Rn1Pout+Rn1(RL1+RL2+Rconqv)qv

(Rn1+Rn2)
(19)

P2 =
Rn2Pin +Rn1Pout−Rn2(RL1+RL2+Rconqv)qv

(Rn1+Rn2)
(20)

Eqs. 19 and 20 state the roles ofRn1, Rn2, RL1, RL2, andRcon on
the variations ofP1 andP2 with the given values ofPin, Pout, and
qv, as observed in the practice. Therefore, it is fairly straightfor-
ward to conclude the dynamic sensitivity of the downstream set
to any slight changes of the upstream one. We then can rewrite
both the hydrodynamic and bearing torques dependency on all
the resistances as follows.

Thi = fi(αi)D
3
vi∆Pi(Rn1,Rn2,RL1,RL2,Rcon) (21)

Tbi = Ci∆Pi(Rn1,Rn2,RL1,RL2,Rcon) (22)

Note that fi is a function of many nonlinear terms which
include the changingTci andCcci in addition to the valves’ an-

gles. For a systematic analysis of the whole system, the follow-
ing functions are fitted to theD3

vi fi of each valve:

Th1 = (a1α1eb1α1
1.1

− c1e
d1α1)

︸ ︷︷ ︸

D3
v1 f1

(Pin −P1)

= (a1α1eb1α1
1.1

− c1e
d1α1)×

e1
(p1α3

1+q1α2
1+o1α1+s1)2

∑2
i=1

ei
(piα3

i +qiα2
i +oiαi+si)2

× (Pin −Pout− (RL1+RL2+Rconqv)qv) (23)

Th2 = (a′1α2eb′1α1.1
2 − c′1e

d′1α2)
︸ ︷︷ ︸

D3
v2 f2

(P2−Pout)

= (a′1α2eb′1α2
1.1

− c′1e
d′1α2)×

e2
(p2α3

2+q2α2
2+o2α2+s2)2

∑2
i=1

ei
(piα3

i +qiα2
i +oiαi+si)2

× (Pin −Pout− (RL1+RL2+Rconqv)qv) (24)

where,a1 = 0.4249,a′1 = 0.1022,b1 =−18.52,b′1 =−17.0795,
c1 = −7.823× 10−4, c′1 = −2× 10−4, d1 = −1.084, andd′

1 =
−1.0973. We also replace the sign function (sign(α̇i)), which
is being used in the bearing torque statement to present its resis-
tance role, by the smooth function tanh(Kα̇i) for ease of analysis.
Figs. 4(a) and 4(b) are results of the stability analysis of the cou-
pled system; we will report this effort as another article.

The state variables are defined as follows.

[z1,z2,z3,z4,z5,z6 = α1, α̇1, i1,α2, α̇2, i2]

We previously developed the magnetic force and rate of current
terms [3] to be used in deriving the state space equations as fol-
lows.

Fmi =
C2iN2

i i2i
2(C1i +C2i(gmi− xi))2 (25)

dii
dt

=
(Vi −Ri i i)(C1i +C2i(gmi− xi))

N2
i

−
C2i i i ẋi

(C1i +C2i(gmi− xi))
(26)

ż1 = z2 (27)

ż2 =
1
J1

[
r1C21N2

1z2
3

2(C11+C21(gm1− r1z1))2 −b1dz2− k1tz1

(Pin−Pout−(RL1+RL2+Rconqv)qv)e1
(p1z3

1+q1z2
1+o1z1+s1)2

∑i=1,4
ei

(piz3
i +qiz2

i +oizi+si)2

×

[

(a1z1eb1z1
1.1
− c1ed1z1)−C1× tanh(Kz2)

]]

(28)

ż3 =
(V1−R1z3)(C11+C21(gm1− r1z1))

N2
1

−
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C21z3z2

(C11+C21(gm1− r1z1))
(29)

ż4 = z5 (30)

ż5 =
1
J2

[
r2C22N2

2z2
6

2(C12+C22(gm2− r2z4))2 −b2dz5− k2tz4

(Pin−Pout−(RL1+RL2+Rconqv)qv)e2
(p2z3

4+q2z2
4+o2z4+s2)2

∑i=1,4
ei

(piz3
i +qiz2

i +oizi+si)2

×

[

(a′1z4eb′1z4
1.1

− c′1e
d′1z4)−C2× tanh(Kz5)

]]

(31)

ż6 =
(V2−R2z6)(C12+C22(gm2− r2z4))

N2
2

−

C22z5z6

(C12+C22(gm2− r2z4))
(32)

where,x indicates the plunger displacement,r is the radius of the
pinion, Fm stands for the motive force,C1 andC2 are the reluc-
tances of the magnetic path without airgap and airgap, respec-
tively, N is the number of coils,i indicates the applied current,
gm is the nominal airgap,J is the polar moment of inertia of the
valve’s disk,bd is the equivalent torsional damping,Kt indicates
the equivalent torsional stiffness,V is the supply voltage, and
R indicates the electrical resistance of coil. Note that K=1 re-
sulted in a good approximation to the sign function. Eqs. 27-32
constitute the sixth order dynamic model of the coupled actua-
tors/valves.

3 Optimal Design
Efficient optimization schemes are needed to be utilized in

minimizing the amount of energy used by the whole system with
respect to the stability criteria we developed earlier [4, 28]. Ne-
glecting the parameters’ constraints established throughthe sta-
bility analysis would result in the failure of the whole system
shown in Fig. 4(a) revealing the hyperchaotic dynamics of both
the valves/actuators for a set of the critical parameters; two pos-
itive Lyapunov exponents shown in Fig. 4(b) confirm the hyper-
chaotic behavior of the system. We selected critical valuesof the
equivalent viscous damping and friction coefficient of the bear-
ing area (bdi = 10−3, µi = 5×10−2), based on the stability anal-
ysis, to present the hyperchaotic dynamics of both the valves and
actuators. The detailed results and discussions will be presented
as another article. The US Navy has experienced such a disaster
by running the flow line within the critical parameters due tothe
military incident.

The problem is one of constrained optimization with pos-
sibly several local minima. Therefore, we need to utilize effi-
cient optimization approaches to get the global minimum; the
constraints are the stability and physical ones. The cost function
we wish to minimize is a lumped term of the energy used in both
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FIGURE 4. (a) The hyperchaotic dynamics of the valves/actoators;
(b) The Lyapunov exponents indicating the hyperchaotic dynamics of
the system

the sets.

minE =
2

∑
i=1

∫ t f

0
Vii dt (33)

subject to :z1 < 90◦, z4 < 90◦

We previously reported that the analytical model would not
be valid atz1 = 90◦ andz4 = 90◦ [3–6, 26]. The cost function is
typically determined with respect to the scale and performance
of the network. Tens of such actuated valves are used in the US
Navy fleet and a lower lumped amount of energy consumed in
the network is needed to reduce the cost of operation. This would
lead us to select a lumped cost function to be minimized. After
selecting some of the parameters as predetermined, the design
variables to be used in the optimization process are chosen as
follows: C11, C12, C21, andC22 are the magnetic reluctances,gm1
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andgm2 indicate the airgaps, andN1 andN2 are the number of
coils for both the actuators.

We hence define the design variables as the following:

θ = [C11,C12,C21,C22,N1,N2,gm1,gm2]
T (34)

The state equations, as discussed earlier, need to be satis-
fied at all times during the optimization process and the design
variables are subject to the following lower and upper bounds.

θmin = [0.8e6,0.8e6,4e8,4e8,2900,2900,0.08,0.08]T (35)

θmax = [2e6,2e6,9e8,9e8,3400,3400,0.11,0.11]T (36)

These bounds were established based on practical system con-
siderations, stability analysis, and physical constraints. We em-
ploy three global optimization tools including simulated anneal-
ing, genetic, and gradient based (GlobalSearch) algorithms to
provide a clear map of optimization efforts with respect to the
locality/globality of the cost function minima.

The first method (SA) was independently developed by
Kirkpatrick et al. [29] and by Cerny [30]. The second one (GA)
has been designed based on a heuristic search to mimic the pro-
cess of natural selection [31].

One of the advantages of the simulated annealing procedure
is to select a new point randomly. We hence need to set the initial
guesses as random numbers. The algorithm covers all new points
to reduce the objective. At the same time, with a certain prob-
ability, points that increase the objective are also accepted. The
algorithm avoids to be trapped in local minima by using points
that raise the objective and has the potential to search globally
for more possible solutions.

The genetic algorithm is significantly more robust than other
conventional ones. It does not break easily in the presence of
slight changes of inputs, and noise. For a large state-space, the al-
gorithm may potentially exhibit significantly better performance
than typical optimization techniques.

The design variables in practice are not of the same order,
and caused serious numerical errors in our initial studies.We
solved this issue by conditioning them using a normalization
scheme as follows.

Nni =
Ni

103 ;C1in =
C1i

106 ;C2in =
C2i

108 ;gmin = 10gmi

Note that random initial guesses we also used in the opti-
mization process (as required by simulated annealing) as follows.

θnr = θlb +(θub−θlb)× rand(0,1) (37)

where rand(0,1) is a random number between zero and one. We
developed the algorithm in MATLAB and captured many inter-
esting results.

4 Results
The predetermined parameters given in Table 1 were ob-

tained from the experimental work we have done for the single
set as shown in Fig. 2. Table 2 gives the optimal design variables
utilizing the GlobalSearch, genetic, and simulated annealing al-
gorithms. The GS, genetic, and SA algorithms terminate after
6000, 1040, and 24000 iterations, respectively, satisfying the tol-
erances defined for both the variables and the lumped cost func-
tion. All methods yield lower values ofC11, C12, C21, C22, gm1,
andgm2, and higher values for the number of coils with respect
to their corresponding nominal values.

These optimal variables to be used in the actuation parts are
considerably more efficient in that higher and lower values of the
actuation forces and currents are obtained as shown in Figs.5
and 6, respectively. Note that for both the nominal and optimal
configurations, the downstream actuators’ currents and forces are
lower and higher, respectively, than those of the upstream ones,
particularly for the optimal sets. This can be easily addressed
with respect to the sudden contraction between the valves. The
change of pipe diameter would potentially yield higher values of
both the hydrodynamic and bearing torques acting on the down-
stream valve based on Eqs. 7-9, 21, and 22, to be stated as fol-
lows.

Th2

Th1
∝

(
Dv2

Dv1

)3

×

(
cv1

cv2

)2

(38)

Tb2

Tb1
∝

(
Dv2cv1

Dv1cv2

)2

(39)

The downstream set is hence expected, for both the nominal
and optimal cases, to be subject to the higher hydrodynamic and
bearing torques for the approximate ranges of 0≤ αi ≤ 60◦ and
αi ≥ 60◦, respectively, as shown in Fig. 7. From another aspect,
we previously established the important roles of both the hydro-
dynamic and bearing torques on the valve motions. The hydrody-
namic torque is a helping load to push the valve to be closed and
is typically effective for when the valve angle is lower than60◦

[6]. Note that the bearing torque is a resistance load and remark-
ably becomes effective for the valve’s angle higher than that of
60◦; we validated the effective ranges experimentally [6] which
indicate the helping and resisting natures of the hydrodynamic
and bearing torques by presenting positive and negative values,
respectively. Consequently, the higher helping loads would lead
to the downstream valves’ higher rotation angles than thoseof
the upstream ones, shown in Fig. 8;α1no = 22◦, α2no = 26◦,
α1op = 63◦, andα2op = 75◦. The higher rotation angles mini-
mize the dominator of the magnetic force term stated in Eq. 25
and one is expectedly able to notice slightly higher value ofthe
force for the nominal downstream set and considerably higher
amount for the optimal one in addition to the effects of the opti-
mal design variables.
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TABLE 2. The nominal and optimal variables

Nominal GS GA SA
C11
106 (H

−1) 1.56 0.8 0.8 0.8014
C21
108 (H

−1) 6.32 3.8 3.8009 3.8
C12
106 (H

−1) 1.56 0.9 0.8220 0.813
C22
108 (H

−1) 6.32 4 3.8676 3.8018

N1 3300 3400 3398 3400

N2 3300 3400 3330 3399

gm1(m) 0.1 0.08 0.08 0.08

gm2(m) 0.1 0.08 0.08 0.08

Etot 25165 20563 20572 20400

The optimal design variables which include smaller values
of C1i ’s, C2i ’s, gm’s and higher values ofNi ’s would also remark-
ably help magnify the magnetic forces based on Eq. 25. From
another aspect, the circled area shown in Fig. 7 confirms the re-
duced bearing torques of the optimal sets than those of the nomi-
nal ones to help consume lower values of the currents and lumped
energy. Significantly smaller amounts of currents are used in the
optimal sets, as shown by the circled area in Fig. 6; this can be re-
lated to the decreased resistance torques (the bearing ones) in ad-
dition to the increased magnetic forces. Subsequently, we would
be able to apply a lower level of the lumped energy to carry out
the closing efforts.
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FIGURE 5. The optimal and nominal magnetic forces

Consequently, reduced amounts of energies are consumed
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FIGURE 9. The optimized lumped amount of energy: (a) GS (Eopm=

20563; (b) GA (Eopm= 20572); (c) SA (Eopm= 20400))

as shown in Figs. 9(a), 9(b), and 9(c). Shown in Figs. 9(a), 9(b)
and, 9(c) reveal upward of 18.28%, 18.25%, and 18.94% energy
savings obtained through the GS, genetic, and SA algorithms,
respectively, for the whole optimal systems in comparison with
that of the nominal one:

∆EGS =
Enominal−Eoptimal

Enomial
×100≈ 18.28% (40)

∆EGA =
Enominal−Eoptimal

Enomial
×100≈ 18.25% (41)

∆ESA =
Enominal−Eoptimal

Enomial
×100≈ 18.94% (42)

We repeatedly examined the optimization schemes to avoid to
be trapped in local minima. The negligible difference (lessthan
1.6%) among the GS, genetic, and SA algorithms would poten-
tially confirm the global minimum value. The amount of energy
saved is promising in that we typically run tens of valve-actuator
sets in a flow line and using such optimal configurations would
help reduce the amount of energy consumption and subsequently
the cost of operation for the whole network.

5 Conclusions
This paper presented a novel coupled nonlinear model of

two actuators and valves subject to the sudden contraction.We
discussed the effects of mutual interactions between the valves’
dynamics in correlations with the flow nonlinear torques includ-
ing both the hydrodynamic and bearing ones. These dependen-
cies among different components were formalized to yield a sixth
order dynamic model of the whole system. We used simulated
annealing, genetic, and gradient based algorithms to carryout op-
timization and obtained the global minimum of the lumped cost
function defined as the sum of energy consumed in each set.

The principal results of this paper can be summarized as fol-
lows.

• Energy can be saved by a remarkable amount (as much as
19%) by implementing optimal design.

• The optimal flow torques help consume a minimum level of
the lumped energy.

• Lower values of the currents and subsequently instantaneous
energies (by plottingEins= vi i i vs. αi) are consumed partic-
ularly for higher rotation angles.

• Higher values of the motive forces are obtained.
• Better optimal performances would be obtained using opti-

mal design.

We currently focus on developing a comprehensive model
for n valves and actuators to be operated optimally in series.
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