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In this paper, a nonlinear model-based adaptive control approach is proposed for a solenoid-valve system. The challenge is that
solenoids and butterfly valves have uncertainties in multiple parameters in the nonlinear model; various kinds of physical appear-
ance such as size and stroke, dynamic parameters including inertia, damping, and torque coefficients, and operational parameters
especially, pipe diameters and flow velocities. These uncertainties are making the system not only difficult to adjust to the environ-
ment, but also further complicated to develop the appropriate control approach for meeting the system objectives. The main con-
tribution of this research is the application of adaptive control theory and Lyapunov-type stability approach to design a controller
for a dynamic model of the solenoid-valve system in the presence of those uncertainties. The control objectives such as set-point
regulation, parameter compensation, and stability are supposed to be simultaneously accomplished. The error signals are first for-
mulated based on the nonlinear dynamic models and then the control input is developed using the Lyapunov stability-type analysis
to obtain the error bounded while overcoming the uncertainties. The parameter groups are updated by adaptation laws using a
projection algorithm. Numerical simulation results are shown to demonstrate good performance of the proposed nonlinear model-
based adaptive approach and to compare the performance of the same solenoid-valve system with a non-adaptive method as well.

1. Introduction

In order to achieve advanced automation [1] in systems
such as marine vessels or ship-based machinery system [2],
solenoid actuators and valves are often used [3] to increase
survivability and capability. One typical type of actuator
driven by solenoids is shown in Figure 1, which is operated by
the electromagnetic force. The electric-driven solenoid valve
system [4] and its sophisticated control can provide high lev-
els of automation in large systems. The useful function of the
solenoid-valve, once an electrical signal (current or voltage)
is applied, is to activate a mechanical motion such as dis-
placement or rotation via the solenoid magnetic forces and
torques. The proportional solenoids normally require inte-
grated electronics for controlling the plunger to give such a
signal. Hydrodynamic torque of a butterfly valve comprises
the core knowledge of fluid valve system design [5], and
it is known that most of the valves in real systems have
strongly nonlinear characteristics between the force and

displacement [6, 7]. The use of an intelligent approach [8, 9]
such as adaptive, robust, optimal, or nonlinear control of the
actuator-valve machinery systems will benefit a wide spec-
trum of nonlinear systems, compensating for nonlinearities
[10] and dynamic characteristics. This approach will not only
decrease the amount of cost and casualties but also improve
the performance of the mechatronic system. To investigate
the particular application, it is important to emphasize
the nonlinear dynamic modeling analysis of such actuator-
valve systems because the accuracy and reliability of these
systems depend highly on the mathematical system modeling
[11] and its validation. In [12], the authors developed and
analyzed the nonlinear dynamic model of a solenoid-valve
system; the reader is also referred to [13, 14] for recent mod-
eling and analysis of solenoid actuators.

This paper will focus on model-based nonlinear adaptive
control of an actuator-butterfly valve. The solenoid-valve
system is described based on the exact model knowledge
of the system. Figure 1 shows the integrated system, which
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Figure 1: System Configuration.

consists of an electric-driven solenoid and a butterfly valve.
The valve operates by solenoids that use a magnetic coil
to move a movable plunger connected with the valve stem
by means of a gear train and linkage. The control input
is designed by substituting the current signal from the
model of the electromagnetic force, pulling the plunger, and
then controlling the angular position of the butterfly valve.
The system has uncertainties in multiple parameters in the
dynamic model, which requires the system to continuously
adjust to the environment and consequently requires adap-
tation for sustainability and capability. The integrated system
is highly nonlinear in addition to its parameter uncertainties.
Hence, an adaptation law is proposed [8, 9, 17] and an
adaptive control method is developed for the solenoid-valve
system in multiple parametric uncertainties. A closed-loop
stable controller is designed for the set-point trajectory
tracking by introducing a Lyapunov-based stability analysis
[9] based on the error signals of the nonlinear solenoid-valve
system. The numerical results in the simulation are used for
initial verification and performance evaluation.

2. Model-Based Nonlinear System

2.1. System Model. The dynamic equations of motion of the
plunger and butterfly valve are given by [15]

mẍ + B1ẋ + kx = Fmag − Fc,

J ä + B2α̇ = rgFc − Ttot,
(1)

where x(t) is the displacement of the solenoid plunger, α(t) is
the angle of butterfly disk, and Ttot(t) is the sum of the hydro-
dynamic and bearing torques expressed as Ttot = Tb + Th.
The bearing torque is given as Tb = (π/8)μDsD2

pΔPvCR(α),

where the bearing toque coefficient, CR(α) =
√
C2
L + C2

D =√
(1.1 4

√
sin((α/90)3180))2 + ( 3

√
cosα)2, is obtained from the

valve modeling (see [5, 15]) and the two subterms, lifting

force CL = 1.1 4
√

sin((α/90)3180) and drag force CD = 3
√

cosα,
are nonlinear functions of the valve angle rotation α(t). The
hydrodynamic torque Th is obtained by reviewing three-
dimensional hydrodynamic torque coefficient based on [7,
16] as Th = (8/3π)ρD3

pV
2
OTc(α)[(VJ /VO)(α)]2, where both

Tc(α) and (VJ /VO)(α) depend on the closing angle (α) of the
butterfly valve and D3

p term is a nonlinear term according
to the pipe size. Solving the two equations in (1) with the
contact force, Fc(t), and substituting the magnetic force,
Fmag(t), into the equation yields

(
m +

J

r2
g

)
rg ẍ +

(
B1 +

B2

r2
g

)
rg ẋ + krgx

= rg
C2N2

2(C1 + C2x)2 i
2 − Ttot,

(2)

where the magnetic force Fmag = (C2N2/2(C1 + C2x)2)i2

used to lift the plunger of the solenoid actuator. The actuator
is a current-controlled solenoid [15], proportional to the
square of the current i(t), and C1, C2 are reluctances of
the magnetic paths, obtained from the geometry of electric
actuator [4, 15]. It is assumed that the pinion and the valve
are moving at the same speed, that is, the gear ratio is 1 : 1 and
x(t) = rgα is the simple geometric relationship between the
displacement of the pinion and the valve angle. Hence, the
current source i2(t) is substituted for designing the closed-
loop control input, u(t), and then the following equation is
obtained:

(
m +

J

r2
g

)
rg ẍ +

(
B1 +

B2

r2
g

)
rg ẋ + krgx

= rg
C2N2

2(C1 + C2x)2 u− Ttot.

(3)

For the subsequent controller design, multiplying (3)
with the inverse term of the control input, 2(C1 + C2x)2/
(rgC2N2), yields a compact form of the dynamic equation as

M(x, θ)ẍ + C(x, θ)ẋ + D(x, θ)x = u− B(Tb + Th), (4)

where θ describes a lumped expression of parameters
obtained from (3) and (4), where each parameter is shown
in Table 2 and the substituted terms are defined as follows:

M(x, θ) =
(
m +

J

r2
g

)
rgB, B = 2(C1 + C2x)2

rgC2N2
,

C(x, θ) =
(
B1 +

B2

r2
g

)
rgB, D(x, θ) = krgB.

(5)

2.2. Error Signals Formulation. The following set-point con-
trol approach is used. Let xd(t) define the set-point trajectory
and then the error can be defined as

e ≡ xd − x, ė = ẋd − ẋ, ë = ẍd − ẍ, (6)
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Figure 2: Valve rotation angle α(t) (adaptive approach).

where ẋd(t) and ẍd(t) are the first and second time derivatives
of xd(t), which are assumed to be bounded. Premultiplying
ë(t) in the last error signal of (6) with M(x, θ) yields
M(x, θ)ë = M(x, θ)ẍd −M(x, θ)ẍ. Substituting M(x, θ)ẍ in
(4) into the above equation produces

M(x, θ)ë = M(x, θ)ẍd + C(x, θ)ẋ + D(x, θ)x − u

+ B(Tb + Th).
(7)

A filtered error signal and its derivative are defined as

r ≡ ė + λ1e, ṙ = ë + λ1ė, (8)

where λ1 ∈ �+ is a positive adjustable control gain. Multi-
plying (8) with M(x, θ) and then substituting for M(x, θ)ë(t)
in (7) yields

M(x, θ)ṙ = M(x, θ)ẍd + C(x, θ)ẋ + D(x, θ)x − u

+ B(Tb + Th) + M(x, θ)λ1ė +
1
r2
g
e − 1

r2
g
e,

(9)

where the last term e(t)/r2
g is added and subtracted for fur-

ther development of the control design based on Lyapunov’s
method.

3. Lyapunov-Based Adaptive Feedback Control

Let V(t) be a Lyapunov candidate function

V = 1
2

(
rTMr + eTe + eTα eα + Θ̃TΓ−1Θ̃

)
, (10)

where the last term of the Lyapunov candidate function, Γ =
γIp×p, is a constant diagonal matrix with the gain value γ,
Ip×p is a p× p identity matrix, and the parameter estimation

error, Θ̃, is defined as Θ̃ = Θ− Θ̂, where Θ ∈ �p is a known

Table 1: Regression and parameter estimation terms.

No. Terms No. Terms

W101 ẍd W113 CR(α)x

W102 ẍdx W114 Tc(α)[VJ(α)/VO]2x2

W103 ẍdx2 W115 CR(α)x2

W104 ẋ W116 ẋė

W105 ẋx W117 ẋe

W106 ẋx2 W118 xẋė

W107 x W119 xẋe

W108 x2 W120 e

W109 x3 W121 λ1ė

W110 Tc(α)[VJ (α)/VO]2 W122 λ1xė

W111 CR(α) W123 λ1x2ė

W112 Tc(α)[VJ(α)/VO]2x — —

Θ̂101 M̂s2Ĉ2
1/(Ĉ2N̂2) Θ̂113 T̂b14Ĉ1/(r̂g N̂2)

Θ̂102 M̂s4Ĉ1/N̂2 Θ̂114 T̂h12Ĉ2/(r̂g N̂2)

Θ̂103 M̂s2Ĉ2/N̂2 Θ̂115 T̂b12Ĉ2/(r̂g N̂2)

Θ̂104 Ĉs2Ĉ2
1/(Ĉ2N̂2) Θ̂116 M̂s2Ĉ1/N̂2

Θ̂105 Ĉs4Ĉ1/N̂2 Θ̂117 M̂s2Ĉ1/N̂2

Θ̂106 Ĉs2Ĉ2/N̂2 Θ̂118 M̂s2Ĉ2/N̂2

Θ̂107 k̂2Ĉ2
1/(Ĉ2N̂2) Θ̂119 M̂s2Ĉ2/N̂2

Θ̂108 k̂4Ĉ1/N̂2 Θ̂120 1/r2
g

Θ̂109 k̂2Ĉ2/N̂2 Θ̂121 M̂s2Ĉ2
1/(Ĉ2N̂2)

Θ̂110 T̂h12Ĉ2
1/(r̂g Ĉ2N̂2) Θ̂122 M̂s4Ĉ1/N̂2

Θ̂111 T̂b12Ĉ2
1/(r̂g Ĉ2N̂2) Θ̂123 M̂s2Ĉ2/N̂2

Θ̂112 T̂h14Ĉ1/(r̂g N̂2) — —

Table 2: List of simulation parameters.

m J rg B1 B2 k N ΔPv

0.1 1.04e−6 1e−2 10 20 4e2 8.8e3 0.5

C1 C2 ρ Dp VO μ Ds p

1.57e6 6.32e8 1e3 5′′ ∼ 8′′ 3.7 0.1 0.1 23

constant parameter vector and Θ̂ ∈ �p is the estimated
constant parameter vector (see Table 1). Differentiating (10)
yields

V̇ = rTMṙ +
1
2
rTṀr + eT ė +

1
r2
g
eT ė − Θ̃TΓ−1 ˙̂Θ, (11)

where the time derivative of the inertia matrix is obtained
as Ṁ = (m + J/r2

g )(4(C1 + C2x)/N2)ẋ, where Ḃ = (4(C1 +
C2x)/rgN2)ẋ, eTα ėα = (1/r2

g )eT ė as eα ≡ αd − α = xd/rg −
x/rg = e/rg , ėα ≡ α̇d − α̇ = ẋd/rg − ẋ/rg = ė/rg , in which the
error signals of the valve angle, eα(t), can be defined using

the geometric relationship and ˙̃
Θ(t) = − ˙̂Θ comes from the

definition of Θ̃.
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Figure 3: Plunger displacement x(t) (adaptive approach).
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Figure 4: Valve rotation angle α(t) (no adaptation scheme).

3.1. Design of Control Input. Substituting M(x, θ)ṙ(t) into
(11) yields

V̇ = rT
(
Mẍd + Cẋ + Dx − u + B(Tb + Th) + Mλ1ė +

1
r2
g
e

)

− (ė + e)Te
r2
g

+
1
2
rTṀr + eT ė +

1
r2
g
eT ė − Θ̃TΓ−1 ˙̂Θ,

(12)

where the last term in (9) premultiplied by r(t) came out of
the parenthesis in (12) and is used for the definition of r(t)
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Figure 5: Plunger displacement x(t) (no adaptation scheme).
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Figure 6: Filtered Error r(t) (adaptive approach).

in (8). Then, combining the parameterized terms in (12) and
substituting them into WΘ yields

WΘ =Mẍd + Cẋ + Dx + B(Tb + Th) + Mλ1ė +
1
r2
g
e +

1
2
Ṁr,

(13)

where W(ẍd, ẋ, x, r,α, ė, e) ∈ �1×p is a known regression
vector, which is shown in the left side of Table 1 via the
process given later (see (17)) and Θ as the nominal value of
the lumped parameter vector. Rearranging (12) produces

V̇ = rT(WΘ− u)− eTe

r2
g

+ eT ė − Θ̃TΓ−1 ˙̂Θ, (14)
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Figure 7: Displacement tracking error e(t) (adaptive approach).
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Figure 8: The rate of displacement ẋ(t).

where ėTe/r2
g is canceled in the last second term in (12),

having the opposite sign because they are scalar, ėTe = eT ė.
The control input can be designed based on Lyapunov

stability analysis, making V̇ negative definite to be shown in
the end, as

u =WΘ̂ + k1r + e, (15)

where r(t) is a feedback error term, k1 is a positive constant
as the control gain, e(t) is another feedback error term added
to cancel the term having the opposite sign, eT ė, outside the
parenthesis by utilizing the definition of r(t) given in (8), and
WΘ̂ captures the uncertainties associated with the elements
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of M, C, D, B(Tb1 +Th1), Mλ1, 1/r2
g , and Ṁ, which is defined

as

WΘ̂ = M̂ẍd+Ĉẋ+D̂x+B̂

(
T̂b1CR(α)+T̂h1Tc(α)

[
VJ

VO
(α)
]2
)

+ M̂λ1ė+
1
r̂2
g
e+

1
2

˙̂Mr,

(16)

where the estimated parameter sets are given as M̂(x, θ) =
(m̂ + Ĵ/r̂2

g )r̂g B̂, where B̂ = 2(Ĉ1 + Ĉ2x)
2
/r̂g Ĉ2N̂2, Ĉ(x, θ) =

(B̂1 + B̂2/r̂2
g )r̂g B̂, D̂(x, θ) = k̂r̂g B̂, T̂b1 = (π/8)μ̂D̂sD̂2

pΔP̂v,
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Figure 11: Total torque Tt(t).

and T̂h1 = (8/3π)ρ̂D̂3
pV̂

2
O. In order to develop the estimate

parameter vector Θ̂ in (16), we need to first define the
regression and the estimate terms. Thus, the first term, M̂ẍd,
in (16) can be defined as

M̂ẍd =
(
m̂ +

Ĵ

r̂2
g

)
r̂g

2
(
Ĉ1 + Ĉ2x

)2

r̂g Ĉ2N̂2
ẍd

= M̂s
2Ĉ2

1

Ĉ2N̂2
ẍd + M̂s

4Ĉ1

N̂2
xẍd + M̂s

2Ĉ2

N̂2
x2ẍd

=
[
ẍd xẍd x2ẍd

]
︸ ︷︷ ︸

W101∼W103

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M̂s
2Ĉ2

1

Ĉ2N̂2

M̂s
4Ĉ1

N̂2

M̂s
2Ĉ2

N̂2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Θ̂101∼Θ̂103

,

(17)

where M̂s = (m̂ + Ĵ/r̂2
g ), Ĉs = (B̂1 + B̂2/r̂2

g ) (this is shown in

Table 1), and r̂g , Ĉ1, or Ĉ2 are canceled. W101 ∼W103 are the

measurable regression terms and Θ̂101 ∼ Θ̂103 is the estimat-
ed parameters, defined in Table 1, respectively. Similarly to
(17), the rest of the terms in (16) are also given in Table 1.

3.2. Online Adaptation Laws for Parameter Updates. The
following is constructed to define the known upper and
lower bounds but with an unknown parameter of Θ̂(t) in the
sense that

Θ̂
j
≤ Θ̂ j(t) ≤ Θ̂ j , (18)
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where Θ̂ j(t) are the estimated parameters as shown in Table 1

and Θ̂
j

and Θ̂ j are the lower and upper bounds of the

estimated parameters, respectively, which will be set to the

amount of percentage of their true values. The vector ˙̂
Θ j(t)

is designed to update using a projection-based algorithm as

˙̂
Θ j = Proj

{
ΓWTr, Θ̂ j

}
, (19)
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where Proj{·} is the projection operator [8] and each lumped
parameter is adaptively updated using the adaptation laws
[17] for online estimation of unknown parameter as follows:

Proj
{

˙̂
Θ j

}
= Proj

{
ΓWTr, Θ̂ j

}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΓWTr if Θ̂ j > Θ̂
j
, Θ̂ j < Θ̂ j ,

ΓWTr if Θ̂ j = Θ̂
j
, if ΓWTr > 0,

ΓWTr if Θ̂ j = Θ̂ j , if ΓWTr ≤ 0,

0 elsewhere.
(20)

Thus, substituting u(t) in (15) into V̇ in (13) yields

V̇ = rTWΘ̃− rTk1r − (ė + e)Te − eTe

r2
g

+ eT ė − Θ̃TΓ−1 ˙̂Θ

= − rTk1r −
(

1 +
1
r2
g

)
eTe + Θ̃T

{
WTr − Γ−1 ˙̂Θ

}
.

(21)

Here, WΘ̃ is defined as

WΘ̃ = M̃(ẍd + λ1ė) + C̃ẋ + D̃x + B̃T̃h1Tc(α)
VJ

VO
(α)

+ B̃T̃b1CR(α) + r̃g e +
1
2
˜̇Mr,

(22)

where M̃ = M − M̂, C̃ = C − Ĉ, D̃ = D − D̂, B̃T̃h1 =
BTh1 − B̂T̂h1, B̃T̃b1 = BTb1 − B̂T̂b1, r̃g = 1/r2

g − 1/r̂2
g ,
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Figure 15: Parameter estimates: Θ̂105 ∼ Θ̂108.

and ˜̇M = Ṁ − ̂̇M, in which T̂h1 = (8/3π)ρ̂D̂3
pV̂

2
O and T̂b1 =

(π/8)μ̂D̂sD̂2
pΔP̂v. Actually, Θ̃(t) can be expressed, for exam-

ple, using the definitions of Θ̂ in (16), as follows: owing to the
subsequent adaptation law, the time derivative of V(t) yields
a negative definite function except the origin and upper
bound by

V̇ ≤ −k1‖r‖2 −
(

1 +
1
r2
g

)
‖e‖2, (23)

which can be written as

V̇ ≤ −k2‖z‖2, (24)

where k2 = min{k1, (1 + 1/r2
g )} is a positive constant and

z =
[
rT , eT

]T
. (25)

Using Barbalat’s lemma [18], the set-point tracking error
‖z(t)‖ → 0, thus ‖r(t)‖ → 0 and ‖e(t)‖ → 0 as t → ∞.

Remark 1. According to the analysis from (11) to (25) of
V̇ , the property of V , and the control law of (15) with the
parameter updates of (19) and the projection-based method
of update laws of (20), it is straightforward to derive a
conclusion that the tracking error vector z(t) in (25) is driven
to zero. Thus, the set-point errors r(t), e(t), and eα(t) also
vanish and the parameter estimation error vector Θ̃ in (10)
is bounded where Θ̂, defined after (10), is bounded due to
the projection-based update method and the constant known
parameter, Θ. Owing to the bounds of r(t), e(t) in (8), ė(t)
is bounded and then x(t), resulting in α(t), and ẋ(t) are
bounded, respectively, where all desired trajectories such as
xd(t) and ẋd(t) are assumed to be bounded. M(·), B(·), C(·),
and D(·) matrices in (4) are bounded because θ (due to
Θ) and x(t) are bounded, and Ḃ and Ṁ after (11) are also
bounded owing to the bounds of ẋ(t). Ttot is thus bounded
because α(t) is bounded. Hence, W(·) and the control input
u(t) are bounded and, thus, the current is bounded. This
leads to the boundedness of ẍ(t) in the dynamic model given
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Figure 16: Parameter estimates: Θ̂109 ∼ Θ̂112.

in (4), which enables the boundedness of ë(t) in (6), and then
the set-point tracking error dynamics ṙ(t) in (8) is bounded.
Therefore, we can conclude that all signals are bounded.

Remark 2. WΘ̂ in (16) where the known regression W(ẍd, ẋ,
x, r,α, ė, e) ∈ �1×23 terms and the parameter estimates Θ̂ ∈
�23 are given in this system as in Table 1.

4. Simulation Results

Based on the dynamic model in (4), the numerical sim-
ulation is performed to verify the proposed controllers
with consistently changing parameter values. The parameter
values can be divided into two categories: operational values
such as Dp and VO and uncertain values such as B1, B2,
and μ. After the flow velocity VO is kept on 3.7 [m/s], the
pipe diameter Dp shown in Table 2 is used to vary from 5
inches to 8 inches as Dp = {5.0, 6.0, 7.0, 8.0} [in], where
Dp = {0.1270, 0.1524, 0.1778, 0.2032}[m], by assuming that
the pipe or transmission lines are different according to
their applications. With each Dp size, the variations of all

the parameters are set to 30% for the simulation results
provided here. The determined parameter vectors Tc(α) and
[VJ /VO](α) of the butterfly valve model are borrowed from
[16] for the simulation given as look-up tables from the
experimental data. The amount of upper and lower variation
of the unknown parameter sets is 30% of their real values.
The control gains were chosen selectively as γ = 10, k1 =
250, and λ1 = 1.0 for all cases. MATLAB and Simulink are
used for the simulation. The desired set-point distance of the
solenoid, xd(t), is given as A · (1 − e−Bt), where A = 0.0148
and B = 5.

A typical parameter set for this simulation is given by
Table 2. Figures 2 and 3 show the rotation of the valve angle
and the actual displacement of the plunger, respectively. This
adaptive control approach shows better results compared to
the results obtained from the previous research [15] using
nonadaptive method, which are shown in Figures 4 and 5 for
the displacement of the plunger and the angle of the butterfly
valve. The developed mathematical model is the same as
that of adaptive method based on the nonlinear models and
the new specific approach in this paper is that the error
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signals are formulated by introducing the desired trajectory
to reducing the displacement error in the adaptive method
while overcoming the complicated parametric uncertainties.
And also the response of the adaptive method shows that the
motion process is more consistent in both variables, showing
overdamped phenomena and short rising times, and then
it quickly reaches the steady state. The actual movement is
smoother and faster while all the parameters are varying 30%
in each flow velocity.

Figures 6 and 7 are the filtered error r(t), defined in (8),
and set-point error e(t), given in (6), respectively. Figure 8
shows the rate of the displacement to Figure 3. From Figure 8,
all figures are presented without the notation of the adaptive
approach. Figure 9 shows the control input u(t) of the sole-
noid actuator for each pipe diameter, Dp, designed in (15)
with the nonlinear adaptive controller by substituting the
square of the current, i2(t). The electromagnetic force Fmag(t)
given in (2) and the total torque Tt(t) given in (1) by sum-
ming up the hydrodynamic and bearing torques are plotted i
n Figures 10 and 11, respectively. The torque coefficient Tc(t)

shown in Figure 12 and the ratio of input and output jet
velocities shown in Figure 13 are changed for every 5◦ of the
butterfly angle. As the strokes are increased by the control
input, the angles get larger and then accordingly the value
of the inlet jet velocity increases, which affects the slower
motion of the strokes and angles but the variables (strokes
and angles) reach the steady state and the ratio as well.

The challenge is that most parameter terms in Table 1 are
combined and lumped together due to the dynamic model
in the presence of parameter uncertainty and the model is
complicated owing to the control objectives, set-point regu-
lation, and parametric adaptation. As given in the right side
of Table 1, the unknown bounded parameter estimate vector
Θ̂ ∈ �23 is shown in Figures 14, 15, 16, 17, 18, and 19. It can
be seen that the parameters such as 101, 110, 111, 113, 116,
118, and 121 are quickly updated in the form of premultipli-
cation by its regression term, W and go to steady state. Thus,
they are more parametric-centric terms and related to the
filtered error r(t). The parameters such as 102, 103, 104, 105,
117, 119, and 122 are updated according to the motion of
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the angle and stroke of the solenoid-butterfly valve system.
Some parameters such as 106, 112, 114, and 115 are not
updated but other parameters such as 107, 108, and 120 keep
getting updated. Any parameters changing their values must
be related to the control objective because these terms are
incorporated into the control input in the form of the esti-
mates.

5. Conclusion and Future Work

For developing advanced automation systems such as ship-
based hydraulic systems, a typical solenoid-butterfly valve,
which is driven by electromagnetic, fluid mechanics, and
hydrodynamic forces and torques, is chosen as a continuation
of previous research and an adaptive stable control approach
with adaptation laws is developed accounting for uncertain-
ties in multiple parameters on the nonlinear dynamic model.
A stable adaptive controller of the solenoid-valve system is
designed positioning the angle of the butterfly valve via a
Lyapunov-based approach. The approach yields bounded

error while adapting to the environment in the presence of
complex uncertainties such as different physical appearances,
uncertain parameters, operational characteristics, and para-
metric nonlinear dynamic models.

The parameter estimation for the unknown bounded
parameters is performed using a projection algorithm whose
output yields the upper and lower bounds. Numerical
simulation is used to verify the performance of the proposed
approach to show its effectiveness by comparing to the
same dynamic model without adaptation from the previous
research; when compared to the nonadaptive method, the
responses of the plunger displacement and the rotating
angle are steadier, smoother, and faster. Future work will
be focused on demonstrating the results of hardware-in-the-
loop or experiments for the nonlinear solenoid valve system
as well as applying the suggested adaptive method based on
Lyapunov-based control approach to the real-world system.
Further research on developing control techniques using
robust or optimal method would be continued to overcome
nonlinearities such as hysteresis or nonlinear dynamics.
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Nomenclature

B1, B2: Damping coefficients of the
solenoid and butterfly valve,
respectively (Ns/m)

C1, C2: Reluctances of the magnetic paths
obtained from plunger geometry of
solenoid actuator

CR(α): Bearing torque coefficient as a
function of the valve angle (α)

Ds: Stem diameter (m)
Dp: Pipe diameter (inch or m)
Fmag: Magnetic force (N)
Fc: Contact force or resultant force

Fr(N)
i: Current of solenoid actuator (A)
J : Inertia moment (kgm2)
k: Spring stiffness (N/m)
m: Mass of solenoid plunger (kg)
μ: Friction coefficient of bearing area
N : Number of turns of the coil
ΔPv: Valve differential pressure (psi)
p: Number of estimates
rg : Radius of pinion gear (m)
ρ: Fluid mass density (kg/m3)
u: Control input (A2)

Tc(α): Hydrodynamic torque coefficient as a
function of the valve angle (α)

Tb, Th: Bearing and hydrodynamic torques,
respectively (Nm)

VJ , VO, (VJ /VO)(α): Jet velocity, mean flow velocity, and
their ratio as a function of the valve
angle (α), respectively.
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