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Chilled water systems used in the industry and on board ships are critical for safe and
reliable operation. It is hence important to understand the fundamental physics of these
systems. This paper focuses in particular on a critical part of the automation system,
namely, actuators and valves that are used in so-called ‘‘smart valve’’ systems. The system
is strongly nonlinear, and necessitates a nonlinear dynamic analysis to be able to predict all
critical phenomena that affect effective operation and efficient design. The derived math-
ematical model includes electromagnetics, fluid mechanics, and mechanical dynamics.
Nondimensionalization has been carried out in order to reduce the large number of param-
eters to a few critical independent sets to help carry out a broad parametric analysis. The
system stability analysis is then carried out with the aid of the tools from nonlinear
dynamic analysis. This reveals that the system is unstable in a certain region of the param-
eter space. The system is also shown to exhibit crisis and transient chaotic responses; this
is characterized using Lyapunov exponents and power spectra. Knowledge and avoidance
of these dangerous regimes is necessary for successful and safe operation.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Modeling and designing accurate shipboard machinery systems has received much attention as one of the important
challenges that needs to be overcome for supporting the next generation Naval machinery automation requirements. Typical
automation systems used in the US Navy consist of actuators, sensors, controllers, valves, piping, electrical cabling and com-
munication wiring. Many types of actuator-valve systems are in use [1,2].

In general, these systems are nonlinear and exhibit nonlinear phenomena such as multiple steady solutions, bifurcations,
multi-frequency responses, and chaotic dynamics. All of these phenomena have been observed in practice but cannot be ex-
plained even qualitatively by traditional linear theories used in engineering practice.

This paper focuses in particular on a critical part of the automation system, namely, actuator-valve systems that form an
important part of what are termed ‘‘smart valve’’ systems. All of these systems are nonlinear and need to be analyzed as such.
Nonlinear dynamic analysis of such an interdisciplinary system is not trivial, but needs to be investigated in order to predict
possible critical phenomena including chaos and its routes.

Specific work related to the system considered here is somewhat difficult to find; however, there has certainly been much
research in related areas and is discussed here. Important nonlinear phenomena in electromechanical systems such as chaos
have received considerable attention by researchers. Belato et al. [3] analyzed chaotic vibrations of an electromechanical
system which includes a nonlinear dynamic system consisting of a simple pendulum whose support point is vibrated along
. All rights reserved.
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Nomenclature

a valve rotation angle
DP pressure drop across the valve
Dt time step for numerical integration
l friction coefficient of the bearing area
q fluid density
c damping coefficient
Cs coefficient of the seating area
Ccc sum of upper and lower contraction coefficients
Ds diameter of the valve shaft
Dv pipe diameter
Fc action and reaction forces of the rack and pinion
Fm magnetic actuation force
g0 maximum stroke of the solenoid plunger
i applied current
J mass moment inertia of the disk
k spring stiffness
m mass of the plunger
N number of coils
r radius of pinion
R1 sum of reluctances of the magnetic flux paths excluding airgap
R2 reluctance of the airgap
Tb bearing torque
Tc hydrodynamic torque coefficient which can be calculated by a table look up for various values of a
Th hydrodynamic torque
Ts seating torque
V supply voltage
V0 inlet velocity of flow
VJ jet velocity
x displacement of the solenoid plunger
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a horizontal guide by a two bar linkage driven by a DC motor with limited power. Nonlinear dynamic analysis of a micro
electromechanical system (MEMS) has been carried out by Xie et al. [4] based on an invariant manifold method proposed
by Boivin et al. [5]. Ge and Lin [6] have studied dynamical analysis of electromechanical gyrostat system subjected to exter-
nal disturbance.

Chaotic responses are distinguishable by sensitivity to initial conditions which are examined in this paper. Power spectra
and Lyapunov exponents are also helpful to identify chaotic system responses since they exhibit a broadband power spec-
trum, and one or more positive Lyapunov exponents must be observed [7]. In particular, we are interested in transient chaos,
which can be found in many systems whose asymptotic behavior is regular [8], but they exhibit extreme sensitivity to initial
conditions, which is characteristic of chaos. The important difference is that it survives only for a finite time. Such phenom-
ena involved with finite time intervals are complex and difficult to discover and characterize.

The first part of the paper deals with a high-fidelity mathematical model, and the second part deals with nonlinear dy-
namic analysis of the system. This paper follows on the previous work carried out by the authors [9].

2. Mathematical modeling

The system consists of a solenoid actuator energized by an electric voltage (DC or AC) which moves a plunger. The plunger
is connected to a butterfly valve through a rack and pinion arrangement as shown in Fig. 1. The magnetic flux generates the
needed electromagnetic force to move the plunger and subsequently results in the rotation of the butterfly valve by the cou-
pled rack and pinion mechanism.

An ideal pressure angle is assumed for the rack and pinion mechanism with an assumption of no backlash of the gears.
The valve controls the flow in a pipe and is hence subject to hydrodynamic forces.

2.1. Electromagnetics

The magnetic force is calculated using the reluctance method [9] as follows.
Fm ¼
R2N2i2

2ðR1 þ R2ðg0 � xÞÞ2
ð1Þ
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Fig. 1. Schematic model of the system.
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A simple circuit model leads to the following nonlinear mathematical model. The inverse function nonlinearity, in particular,
defies easy linearization.
di
dt
¼ ðV � RiÞðR1 þ R2ðg0 � xÞÞ

N2 � R2i _x
ðR1 þ R2ðg0 � xÞÞ ð2Þ
2.2. Fluid mechanics

Analysis must be done on the hydrodynamic, bearing, and seating torques as they are highly nonlinear functions affecting
the valve rotation angle. The torque terms are given as follows [10–14].
Th ¼
8qTcD3

vV2
0

3p
4

½Cccð1� sinaÞ�2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
VJ
V0

� �2

ð3Þ

Tb ¼
p
8
lDsD

2
vDP signð _aÞ ð4Þ

Ts ¼ CsD
2
v ð5Þ
Figs. 2 and 3 illustrate variations of Tc and Ccc, respectively, vs. a. The pressure drop across the valve is calculated as follows.
DP ¼ 1
2
qV2

0
VJ

V0
� 1

� �2

ð6Þ
Clearly, the hydrodynamic and bearing torques are strongly nonlinear functions of the valve angle.

2.3. Dynamics

The dynamical equations of the plunger and butterfly valve can be written as follows (Fig. 4).
m€xþ c _xþ kx ¼ Fm � Fc ð7Þ
J€aþ b _a ¼ rFc þ Th � Tb � Ts ð8Þ
In addition, we have the kinematic constraint between the rack and the pinion,
x ¼ ra: ð9Þ
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Fig. 4. Free body diagrams of the solenoid actuator and the butterfly valve.
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Combining Eqs. (1), (3)–(5), (7), (and) (8), one has,
ðmr2 þ JÞ€aþ ðcr2 þ bÞ _aþ kr2a ¼ rR2N2i2

2ðR1 þ R2ðg0 � raÞÞ2
þ 32qTcD3

vV2
0

3p½Cccð1� sinðaÞÞ�2

� p
16

lqDsD
2
vV2

0 sign ð _aÞ 2
Cccð1� sinðaÞÞ � 1
� �2

� CsD
2
v ð10Þ
Note that Ccc and Tc are dependent on a. Eqs. (2) and (10) constitute the third order dynamic model for the system.
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3. Nondimensionalization

In order to reduce the number of parameters, and to perform a systematic analysis, the nonlinear dynamic equations need
to be nondimensionalized. We define the state vector as x ¼ ½a; _a; i�T , and derive the nondimensionalized state-space equa-
tions as follows.
_x1 ¼ x2 ð11Þ

_x2 ¼ �x1 � 2fx2 þ
#x2

3

ðD1 þ D2ðc� x1ÞÞ2
þ ðx1ðb1eax1 þ b2ÞÞ � signðx2Þ j1x2

1ej2x1 þ j3ej4x1
� �

� CsD
2
v

x2
n0ðJ þmr2Þ ð12Þ

_x3 ¼
ðv � x3ÞðD1 þ D2ðc� x1ÞÞ

N2 � D2x2x3

ðD1 þ D2ðc� x1ÞÞ
ð13Þ
Here,
xn0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr2

J þmr2

s
; c ¼ g0

r
; D1 ¼

RR1

xn0
; D2 ¼

RR2r
xn0

f ¼ ðbþ cr2Þ
2xn0ðJ þmr2Þ ; # ¼ rR2N2i2

0R2

2x4
n0ðJ þmr2Þ
The values of b1, b2, a, j1, j2, j3 and j4 are calculated based on fitting the torques (in nondimensional form) to the following
functions with least square error.
Th ¼ b1aeaa þ b2a ð14Þ

Tb ¼ j1a2ej2a þ j3ej4a ð15Þ
4. Nonlinear analysis

The model has twelve nondimensional parameters; the analysis presented in this paper assumes specific values for ten of
them as shown in Table 1; these values are based on realistic parameter values for an industrial system. Two parameters, #
and f are considered to vary over a range of values.

The sign function is replaced by a differentiable function to make the linearization process easier. A smooth approxima-
tion of the sign function is,
signðx2Þ � tanhðKx2Þ ð16Þ
where, K can be tuned to get a good approximation; we used K = 1 in this analysis.
The Jacobian matrix for the system can be calculated as follows.
J ¼

0 1 0

A0 A1
2#x30

ðD1þD2ðc�x10ÞÞ2

B0 � D2x30
ðD1þD2ðc�x10ÞÞ

C0

2
6664

3
7775 ð17Þ
Table 1
Nondimensional parameters.

b1 7 � 10�4 a 5.2764
b2 0.44 c 1.8
j1 1 � 10�7 j2 13.62
j3 �0.5 f Varies
j4 �13 # Varies
D1 536 Dt 10�4

D2 1 � 104
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where,
A0 ¼
2#x2

30D2

ðD1 þ D2ðc� x10ÞÞ3
þ b1eax10 ð1þ ax10Þ þ b2 � 1 ð18Þ

A1 ¼ �2f� Kð1� tanh2 Kx20Þðj1x2
10ej2x10 þ j3ej4x10 Þ ð19Þ

B0 ¼ �
D2ðv � x30Þ

N2 � D2
2x20x30

ðD1 þ D2ðc� x10ÞÞ2
ð20Þ

C0 ¼ �
D1 þ D2ðc� x10Þ

N2 � D2x20

D1 þ D2ðc� x10Þ
ð21Þ
and [x10,x20,x30] is an equilibrium point of the system.
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For the linearized system, the characteristic equation becomes
s3 þ 2fþ D1 þ D2ðc� x10Þ
N2 þ K j1x2

10ej2x10
��

þ j3ej4x10ÞÞs2 þ 2fþ Kðj1x2
10ej2x10 þ j3ej4x10 Þ

� ��
� D1 þ D2ðc� x10Þ

N2

� �
þ 1� b1eax10 ð1þ ax10Þ þ b2ð Þ

�
sþ A0C0 ¼ 0: ð22Þ
Using Routh–Hurwitz criteria, one is able to judge the system’s linear stability behavior. The asymptotical stability require-
ments of the system can then be determined as follows.
2#x2
30D2

ðD1 þ D2ðc� x10ÞÞ3
þ b1eax10ð1þ ax10Þ þ b2 < 1 ð23Þ
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Fig. 8. Phase portrait for f = 0.133 and # = 1.48 � 105.
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4f2ðD1 þ ðc� x10ÞD2Þ
N2 þ 2fðD1 þ ðc� x10ÞD2Þ2

N4 þ 2#x2
30D2

N2ðD1 þ ðc� x10ÞD2Þ2
þ 4fK j1x2

10ej2x10j3ej4x10
� �

� ðD1 þ ðc� x10ÞD2Þ
N2 þ 2fþ K j1x2

10ej2x10 þ j3ej4x10
� �

� ðD1 þ ðc� x10ÞD2Þ2

N4 þ K2 j1x2
10ej2x10 þ j3ej4x10

� �2

� ðD1 þ ðc� x10ÞD2Þ
N2 þ K j1x2

10ej2x10 þ j3ej4x10
� �

> 2fðb1eax10 ð1þ ax10Þ þ b2Þ þ K j1x2
10ej2x10 þ j3ej4x10

� �
� ðb1eax10ð1þ ax10Þ þ b2Þ ð24Þ
It can be shown from Eq. 23 that the system reveals an unstable response unless k is large enough to reduce the value of b2.
Eq. 24 yields a comprehensive relationship to examine the system stability by varying the critical parameters such as f
(equivalent viscous damping) and # (magnetic force parameter).
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Fig. 5 illustrates the range of f vs. # obtained from the stability criteria from which the stable and unstable regions can be
distinguished. A confirmation of the stability map is shown in Fig. 6 revealing the stable behavior of the system for f = 0.5
and # = 4.8 � 105; the system’s unstable behavior can be observed from Fig. 7 where the response diverges to infinity. We
will also investigate a set of unstable values of f and # to evaluate the system behavior at their critical values in the sense
of fixing f with varying #, and vice versa.

The transient motion appears to have the characteristics of a strange attractor, but eventually settles into a regular
motion. It exhibits narrow-band chaos, a chaotic motion whose phase space orbits remain close to some periodic or regular
orbit; in general, such spectra often show narrow or limited broadening of certain frequency spikes. Shown in Fig. 8 is this
transient chaotic motion trapped between two regular motions for a marginal value of f. The response confirms the occur-
rence of finite time chaos and approaches a regular motion eventually.

The Lyapunov exponents of such a motion shown in Fig. 9 confirm the observed chaotic motion; one positive Lyapunov
exponent is distinguishable. Note that the positive value is not big enough to yield a chaotic motion forever and its effects
finally will be mitigated by the largest negative value of the Lyapunov exponents (jk3j � 10jk1j). Figs. 10 and 11 also illustrate
the variations of Lyapunov exponents vs. f and # and confirm it. We used an integration time step of 10�4 second. Shown in
Fig. 12 is the power spectrum indicating the noisy characteristic typical of transient chaotic responses for a certain range of
frequencies.

Zeeman [15] defines a catastrophe to be any discontinuous bifurcation. Abraham and Stewart [16] have been more spe-
cific and define blue sky catastrophe – a bifurcation in which an entire attractor disappears abruptly from the phase portrait
as a control parameter a passes through its critical value ac; when such a bifurcation occurs, the dynamical system will make
a finite jump to a remote attractor, or diverge to infinity [17].

A small change in the critical value of f (0.133) yields the crisis phenomenon shown in Fig. 13 where a chaotic attractor
abruptly disappears for f = 0.1329 and diverges to infinity. It can also be validated from Fig. 14 where its Lyapunov expo-
nents, having at least one positive value for a chaotic motion, suddenly disappear.
5. Conclusion

This paper employed recently developed accurate nonlinear dynamic models of butterfly valves operated by solenoid
actuators. Many tools from nonlinear dynamic analysis were then utilized to investigate the system stability and distinguish
between the responses for a set of parameters.

The variations of two critical parameters, f and #, were then studied to establish stability regimes and to investigate
harmful nonlinear phenomena such as chaos and crisis.

Lyapunov exponents were calculated displaying one positive value and the power spectrum showed a noisy nature con-
firming the chaotic nature of the response for a certain period of time. Also observed for some parametric value was a blue
sky catastrophe phenomenon, which is distinguishable by the disappearance of a chaotic attractor and its divergence to
infinity when the control parameter passes through its critical value.

Determining the critical range of these parameters is an important step that needs to be taken for safe operation of the
system. Current work is focusing on experimental validation of these theoretical results.
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