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Abstract In this paper, we focus on interconnected trajec-
tory optimization of two sets of solenoid actuated butterfly
valves dynamically coupled in series. The system under-
goes different approach angles of a pipe contraction as
a typical profile of the so-called “Smart Valves” network
containing tens of actuated valves. A high fidelity intercon-
nected mathematical modeling process is derived to reveal
the expected complexity of such a multiphysics system
dealing with electromagnetics, fluid mechanics, and non-
linear dynamic effects. A coupled operational optimization
scheme is formulated in order to seek the most efficient tra-
jectories of the interconnected valves minimizing the energy
consumed enforcing stability and physical constraints. We
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examine various global optimization methods including Par-
ticle Swarm, Simulated Annealing, Genetic, and Gradient
based algorithms to avoid being trapped in several pos-
sible local minima. The effect of the approach angles of
the pipeline contraction on the amount of energy saved is
discussed in detail. The results indicate that a substantial
amount of energy can be saved by an intelligent operation
that uses flow torques to augment the closing efforts.

Keywords Coupled operational optimization · Smart
actuated valve · Interconnected modeling · Pipe contraction

1 Introduction

Optimization of multi-agent and large-scale electromechan-
ical systems has received much attention due to the potential
to reduce energy consumption considerably leading to sav-
ings of significant operational and maintenance costs. One
of those networks is the flow distribution system being
widely used in different applications including municipal
piping systems, oil and gas fields, petrochemical plants,
and the US Navy chilled water systems (Hughes et al.
2006; Lequesne et al. 1998). The so-called “Smart Valves”
network has received considerable attention to be safely
designed and then efficiently operated in critical missions.
The main objective of the smart valves is to shut down
automatically in case of breakage and to reroute the flow
as needed. Optimal design (Naseradinmousavi et al. 2016),
operation, and control are three main steps of minimiz-
ing any system energy consumption with respect to various
stability and physical constraints. In this effort, we focus
on optimizing the dynamically interconnected valve tra-
jectories in order to reduce the lumped amount of energy
consumed in the coupled actuation units.
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We have carried out broad analytical and experimen-
tal studies from nonlinear modeling to design optimization
of both an isolated and interconnected symmetric butter-
fly valves driven by solenoid actuators (Naseradinmousavi
and Nataraj 2011b, 2012, 2013; Naseradinmousavi 2015,
Naseradinmousavi et al. 2016). The multidisciplinary cou-
plings, including electromagnetics and fluid mechanics, had
to be thoroughly considered in the modeling phase in order
to yield an accurate nonlinear model of such a complex
system. A third-order nondimensional dynamic model of
the single set was derived to be used in nonlinear dynamic
analysis (Naseradinmousavi and Nataraj 2012) and optimal
design (Naseradinmousavi and Nataraj 2013).

The dynamic analysis yielded crisis and transient chaotic
dynamics of a single actuated valve for some critical phys-
ical parameters. A comprehensive stability map was also
derived and presented as an efficient tool to determine
the safe domain of operation which in turn could serve
for identifying the lower and upper bounds for the design
optimization efforts. The design optimization was then car-
ried out (Naseradinmousavi and Nataraj 2013) to select
the optimal actuation unit’s parameters coupled with the
mechanical and fluid parts in order to significantly reduce
the amount of energy consumption (upward of % 40).

Note that the applications addressed earlier contain
scores of actuated valves in which a high level of dynamic
coupling has been observed in practice. These dynamic cou-
plings among different sets need to be captured through
analytical studies. We have developed (Naseradinmousavi
2015) a novel nonlinear model for two sets of solenoid
actuated butterfly valves operating in series. The clos-
ing/opening valves were modeled as changing resistors and
the flow between them as a constant one. A nonlinear cou-
pled model revealed the high dynamic sensitivity of each
element of a set, the valve and the actuator, to another one
and vice versa. The power spectrum was used in confirm-
ing the same frequency response of a neighbor set due to the
external periodic noise applied on another set of the valve
and actuator.

In further studies, we optimized the design of cou-
pled actuation units of two sets operating in series
(Naseradinmousavi et al. 2016) subject to a sudden contrac-
tion. The pipe contraction imposed an additional resistance
to be modeled and therefore, the coupled dynamic equa-
tions derived in Naseradinmousavi (2015) had to be slightly
modified (which we represent here for completeness). We
discovered an interesting coupling between currents of
the actuation units through the interconnected flow loads,
including hydrodynamic and bearing torques, which affect
the dynamics of both the valves.

Optimization of electromechanical and multidisciplinary
systems has recently received much attention. Klimovich

(1997) obtained some optimal decisions for one-and two-
dimensional axisymmetrical flow models. Sefkat (2009)
has minimized volume and power dissipation by deriving
expressions for consumed power, magnetic attraction force,
coil temperature and magnet volume, depending on the
dimensions. Elka and Bucher (2009) discussed the optimal
shape design of segmented spatial sensors and actuators that
isolate selected mode shapes and perform modal filtering.
Raulli and Maute (2005) addressed the design of elec-
trostatically actuated microelectromechanical systems by
topology optimization such that the layout of the structure
and the electrode are simultaneously optimized. Grierson
and Pak (1993) investigated an approximate design fit-
ness evaluation technique with the aim of improving the
numerical efficiency of the genetic search algorithm. Other
contributions in operational and design optimization of elec-
tromechanical systems include (Lee et al. 1988; Mezyk
1994; Kajima 1995; Messine et al. 1998; Kelley 1999; Sung
et al. 2002; Karr and Scott 2003; Baek-Ju and Eun-Woong
2005; Yu et al. 2007; Nowak 2010; Chakraborty et al. 2013;
Mahdi 2014).

In this paper, the optimal operation process is formu-
lated to help select the appropriate trajectories of the valves
coupled with the electromagnetical, mechanical, and fluid
parts in order to yield an energy efficient system. The
contribution of this work is to optimize both the valves’
trajectories dynamically coupled in different aspects while
our previous efforts (Naseradinmousavi and Nataraj 2013,
2015; Naseradinmousavi et al. 2016) were on optimizing
the design of the single (by neglecting its dynamic cou-
pling with another set) and coupled actuation units. In this
effort, a lumped cost function will be minimized, while
enforcing the stability and physical constraints, using four
global optimization tools to avoid being trapped in possible
local minima along with the objective of obtaining the most
efficient operations of the coupled valves.

2 Mathematical modeling

Shown in Fig. 1a is a pair of symmetric butterfly valves
driven by solenoid actuators through rack and pinion
arrangements. The rack and pinion mechanism provides a
kinematic constraint which connects the dynamics of the
valve and actuator. Applying DC voltages, as being used
in the Navy ships for chilled water systems, the motive
forces give translational motions to the actuators’ moving
parts (plungers) and subsequently the valves rotate to desir-
able angles. Note that a return spring has been a common
practice among industries to open the valves.

Interconnected modeling of such a multiphysics system
undoubtedly needs some simplifying assumptions to reduce
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Fig. 1 aA schematic configuration of two solenoid actuated butterfly valves subject to the sudden contraction; bA coupled model of two butterfly
valves in series without actuation

time consuming numerical calculations. The force result-
ing from the magnetic field need an extremely short period
of time to reach its maximum value. This period is the so-
called “Diffusion Time” and has an inverse relationship with
the amount of current used. Note that using the current of 24
(A) would yield a negligible diffusion time of τd ≈ 2(ms)

(Naseradinmousavi and Nataraj 2011b) with respect to the
nominal operation time of 180(s).

As is commonly done for valve studies, we will assume
dominant laminar flow for both the coupled valves to avoid
the numerical difficulties involved with a turbulent regime.
Note that developing an analytical model is necessary to
carry out the dynamic analysis and optimization. Never-
theless, a crucial question needs to be carefully answered
with respect to the validity of such an assumption. Using
the values of pipe diameter and flow mean velocity listed
in Table 1, one can easily distinguish the existence of the
turbulent regime which invalidates the assumption we have
made. From another aspect, the analytical formulas derived
for the flow loads, including the hydrodynamic and bearing
torques, have been developed based on the assumption
of laminar flow (Park and Chung 2006; Leutwyler and
Dalton 2008). To address the issues discussed above, we
have carried out experimental work to measure the sum
of the hydrodynamic and bearing torques as the most
affecting loads on the valves and subsequently, the dynam-
ics of the actuators (Naseradinmousavi et al. 2016). The
experiment yielded the total torque for the inlet velocity
of v ≈ 2.7

(
m
s

)
and valve diameter of Dv = 2 (inches)

reasonably validating the laminar flow assumption
(Naseradinmousavi 2012).

The flow torques have been shown to play a highly
important role for the dynamics of an isolated solenoid actu-
ated butterfly valve and we hence expect to observe such
effects for the interconnected sets (Naseradinmousavi 2015)
as well. The coupled system is modeled as a set of five resis-
tors. Two changing resistors represent the closing/opening
valves, two constant ones indicate head losses between the
valves, and fifth is due to the pipe contraction as shown
in Fig. 1b. The inlet and outlet pressures are as shown in
Table 1. Using the assumption of the dominant laminar flow,
the pressure drops between two valves can be expressed
based on the Hagen-Poiseuille (Bennett and Myers 1962)
and Borda-Carnot (Massey and Ward-Smith 1998) formulas
(points 1 and 2):

P1 − Pcon1 = 128μf L1

πD4
v1︸ ︷︷ ︸

RL1

qv (1)

Pcon1 − Pcon2 = 1

2
Kconρv2out (2)

Pcon2 − P2 = 128μf L2

πD4
v2︸ ︷︷ ︸

RL2

qv (3)

where, qv is the volumetric flow rate, μf indicates the fluid
dynamic viscosity, Dv1 and Dv2 are the valves’ diameters,
L1 and L2 stand for the pipe lengths before and after con-
traction, RL1 and RL2 indicate the constant resistances, and

Author's personal copy



1004 P. Naseradinmousavi et al.

Table 1 The system
parameters ρ 1000 kg

m3 v 3m
s

μ 0.5 Pin 256(kPa)

J1,2 0.104 × 10−1(kg.m2) bd1,d2 8420N.m.s
rad

N1 3300 C11,22 1.56 × 106(H−1)

gm1,m2 0.1(m) V1,2 24(Volt)

Dv1 0.2032(m) Dv2 0.127(m)

Ds1,s2 0.01(m) Pout 2(kPa)

k1,2 60(N.m−1) C21,22 6.32 × 108(H−1)

L1 2(m) L2 1(m)

μf 0.018 (Kg.m−1.s−1) R1,2 1(�)

r1,2 0.05(m) θ 90◦

N2 3300

Pcon1 and Pcon2 are the flow pressures before and after
contraction. Kcon is calculated as the following:

Kcon = 0.5(1 − β2)

√

sin

(
θ

2

)
(4)

where, β indicates the ratio of minor and major diameters(
Dv2
Dv1

)
and θ is the angle of approach shown in Fig. 1a and

b. The values listed in Table 1 easily yield Kcon = 0.2562.
We then rewrite (2) as follows:

Pcon1 − Pcon2 = 1

2
Kconρv2out

= 8Kcon

π2D4
v2

ρ

︸ ︷︷ ︸
Rcon

π2D4
v2v

2
out

16︸ ︷︷ ︸
q2v

= Rconq
2
v (5)

where,Rcon is the resistance due to the pipe contraction. The
pressure drop between the valves can be derived by adding
(1), (2), (3) and (5):

P1 − P2 = [RL1 + RL2 + Rconqv]qv (6)

The interconnected P1 and P2 terms are derived (we have
reported in Naseradinmousavi et al. 2016) as follows:

P1 = Rn2Pin + Rn1Pout + Rn1(RL1 + RL2 + Rconqv)qv

(Rn1 + Rn2)

(7)

P2 = Rn2Pin + Rn1Pout − Rn2(RL1 + RL2 + Rconqv)qv

(Rn1 + Rn2)

(8)

where,

Rn1(α1) = e1

(p1α
3
1 + q1α

2
1 + o1α1 + s1)2

(9)

Rn2(α2) = e2

(p2α
3
2 + q2α

2
2 + o2α2 + s2)2

(10)

The numerical values of e1, p1, q1, o1, s1, e2, p2, q2, o2,
and s2 were reported in Naseradinmousavi et al. (2016). The
dynamic sensitivities of P1 and P2 to Rn1, Rn2, RL1, RL2,
and Rcon are distinguishable through (7) and (8). Any slight
dynamic changes of the upstream set of the valve-actuator
would be expected to be observed for the downstream one,
in fact, as often observed in practice. The dependencies
of the hydrodynamic and bearing torques on all the resis-
tances are reformulated as follows, which we have reported
in Naseradinmousavi et al. (2016).

Thi = fi(αi)D
3
vi	Pi(Rn1, Rn2, RL1, RL2, Rcon) (11)

Tbi = Ci	Pi(Rn1, Rn2, RL1, RL2, Rcon) (12)

fi is a nonlinear function of the changing Tci , Ccci , and the
valve rotation angles. To carry out a systematic dynamic
analysis, the following functions are fitted to the D3

vifi of
each valve (Naseradinmousavi 2012, 2015):

Th1 = (a1α1e
b1α1

1.1 − c1e
d1α1 )

︸ ︷︷ ︸
D3

v1f1

(Pin − P1)

= (a1α1e
b1α1

1.1 − c1e
d1α1 ) ×

e1
(p1α

3
1+q1α

2
1+o1α1+s1)

2

∑2
i=1

ei

(piα
3
i +qiα

2
i +oiαi+si )

2

×(Pin − Pout − (RL1 + RL2 + Rconqv)qv) (13)

Th2 = (a′
1α2e

b′
1α

1.1
2 − c′

1e
d ′
1α2 )

︸ ︷︷ ︸
D3

v2f2

(P2 − Pout )

= (a′
1α2e

b′
1α2

1.1 − c′
1e

d ′
1α2 ) ×

e2
(p2α

3
2+q2α

2
2+o2α2+s2)

2

∑2
i=1

ei

(piα
3
i +qiα

2
i +oiαi+si )

2

×(Pin − Pout − (RL1 + RL2 + Rconqv)qv) (14)

The values of a1, a
′
1, b1, b

′
1, c1, c

′
1, d1, and d ′

1 can be found
in Naseradinmousavi et al. (2016).

We have previously derived the rate of current and mag-
netic force terms (Naseradinmousavi and Nataraj 2011b)
which are utilized in developing the sixth-order coupled
dynamic model (Naseradinmousavi et al. 2016) as follows.
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Note that both the motive force and current are highly sensi-
tive to the plunger displacement and subsequently the valve
rotation angle.

Fmi = C2iN
2
i i2i

2(C1i + C2i (gmi − xi))2
(15)

dii

dt
= (Vi − Riii)(C1i + C2i (gmi − xi))

N2
i

− C2i ii ẋi

(C1i + C2i (gmi − xi))
(16)

ż1 = z2 (17)

ż2 = 1

J1

[
r1C21N

2
1 z23

2(C11 + C21(gm1 − r1z1))2
− bd1z2 − k1z1

+
(Pin−Pout−(RL1+RL2+Rconqv)qv)e1

(p1z
3
1+q1z

2
1+o1z1+s1)

2

∑
i=1,4

ei

(piz
3
i +qiz

2
i +oizi+si )

2

×
[
(a1z1e

b1z1
1.1−c1e

d1z1)−C1× tanh(Kz2)
]]

(18)

ż3 = (V1 − R1z3)(C11 + C21(gm1 − r1z1))

N2
1

− r1C21z3z2

(C11 + C21(gm1 − r1z1))
(19)

ż4 = z5 (20)

ż5 = 1

J2

[
r2C22N

2
2 z26

2(C12 + C22(gm2 − r2z4))2
− bd2z5 − k2z4

+
(Pin−Pout−(RL1+RL2+Rconqv)qv)e2

(p2z
3
4+q2z

2
4+o2z4+s2)

2

∑
i=1,4

ei

(piz
3
i +qiz

2
i +oizi+si )

2

×
[
(a′

1z4e
b′
1z4

1.1 − c′
1e

d ′
1z4) − C2× tanh(Kz5)

]]
(21)

ż6 = (V2 − R2z6)(C12 + C22(gm2 − r2z4))

N2
2

− r2C22z5z6

(C12 + C22(gm2 − r2z4))
(22)

where, bd indicates the equivalent torsional damping, Kt is
the equivalent torsional stiffness, V stands for the supply
voltage, x is the plunger displacement, r indicates the radius
of the pinion, C1 and C2 are the reluctances of the magnetic
path without air gap and that of the air gap, respectively,
Fm is the motive force, N stands for the number of coils,
i indicates the applied current, gm is the nominal airgap, J

indicates the polar moment of inertia of the valve’s disk, and
R is the electrical resistance of coil. z1 = α1, z2 = α̇1, and
z3 = i1 indicate the upstream valve’s rotation angle, angular
velocity, and actuator current, respectively. z4 = α2, z5 =
α̇2, and z6 = i2 stand for the downstream valve’s rotation
angle, angular velocity, and actuator current, respectively.

3 Optimal operation

The stability and physical constraints reported in
Naseradinmousavi and Nataraj (2011a, 2012) undoubtedly
demand robust optimization schemes to be utilized in
minimizing the energy consumed by two coupled sets.
Note that operating the system without the constraints
determined through the nonlinear dynamic analysis would
undesirably lead to the catastrophic failure of the network
shown in Fig. 2a revealing the hyperchaotic dynamics of
both the actuated valves. It can in fact be shown that some
critical values of the equivalent viscous damping and fric-
tion coefficient of the bearing area (μi = bdi = 10−7)
yield the hyperchaotic dynamics for the initial values of
α10 = α20 = 3◦. The hyperchaotic dynamics happens for
the systems of order higher than four (n ≥ 4) and can be
recognized by revealing at least two positive Lyapunov
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Fig. 2 a Chaotic dynamics of the valves/actuators; b Two positive
Lyapunov exponents spectra vs. the approach angle indicating the
hyperchaotic dynamics of the system
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exponents. Shown in Fig. 2b reveals two positive Lyapunov
exponents not only for the sudden pipe contraction but also
for a broad range of the approach angles (θ ) indicating the
hyperchaotic dynamics of both the coupled valves. The
hyperchaotic motions reveal higher stochastic amplitude of
oscillations than those of chaotic ones. This would lead us
to carry out a constrained optimization effort to avoid being
exposed to such dangerous dynamical behaviors.

The problem at hand is a constrained optimization prob-
lem with possibly several local minima. Therefore, we have
to employ robust optimization algorithms to capture the
global minimum. The cost function we wish to minimize is
a sum of the energy used in both the sets.

minEtot =
2∑

i=1

∫ tf

0
V ii dt (23)

subject to: z1 < 90◦, z4 < 90◦

& Coupled Dynamic Equations

We then fit two nonlinear curves to the nominal valve
trajectories obtained via (17)–(22):

α1(t) = A tanh(Bt4) (24)

α2(t) = C tanh(Dt4) (25)

The nominal values of A, B, C, and D are listed in Table 2.
The curves fitted to the nominal trajectories are selected
based on desirable smooth valve rotations. The so-called
“S-Shaped” valves’ motions have traditionally been appro-
priate trajectories to avoid dangerous behaviors such as the
well-known water hammering, in particular, for such critical
applications addressed earlier. A, B, C, and D are vari-
ables that we need to optimize in order to identify the most
efficient valve trajectories yielding minimum energy con-
sumption by using the DC voltage sources (V1 = V2 =
24(V olts)). Note that α1(t) and α2(t) are coupled angles
through the interconnected dynamic equations. We next
collect the coefficients into a vector:

θ1 = [A, B, C, D]T (26)

The coupled equations, as discussed earlier, need to be
satisfied at all times during the optimization process and the

coefficients are subject to the following lower and upper
bounds.

θ1min = [0.8, 0.1 × 10−7, 0.92, 0.1 × 10−7]T (27)

θ1max = [0.85, 9.50 × 10−5, 0.98, 5.99 × 10−5]T (28)

These bounds were determined based on practical system
considerations, stability analysis (Naseradinmousavi and
Nataraj 2012; Naseradinmousavi 2012), and physical con-
straints. We employ four global optimization tools including
simulated annealing, genetic, particle swarm, and gradient
based algorithms to provide a clear map of optimization
efforts with respect to the locality/globality of the cost
function minima.

We have thoroughly reported the advantages of sim-
ulated annealing (Kirkpatrick et al. 1983; Cerny 1985),
genetic (Holland 1975), and gradient based algorithms in
Naseradinmousavi et al. (2016). The particle swarm opti-
mization (PSO) was originally developed by Kennedy,
Eberhart and Shi (Kennedy and Eberhart 1995; Shi and
Eberhart 1998) and was first used in simulating social
behaviour. PSO is metaheuristic as it makes few or no
assumptions about the problem being optimized and can
search very large spaces of candidate solutions.

We have used Global Search algorithm in Matlab which
utilizes gradient-based method to return local and global
minima. The algorithm starts a local solver (here fmin-
con) from multiple starting points and stores local and
global solutions found during the search process. The fmin-
con solver estimates gradients by parallel finite differences.
Note that the global search solver uses a scatter-search algo-
rithm to generate multiple starting points which can be
observed in figures shown in results section for presenting
the gradient-based method. It also runs a constrained non-
linear optimization solver to search for a local minimum
from the remaining start points. We have defined function
(TolFun) and constraints (TolCon) tolerances of 10−12 for
all the algorithms. To facilitate the scatter-search algorithm,
in particular for the gradient-based and simulated annealing
methods, we use random initial guesses as follows:

θ1rn = θ1min + (θ1max − θ1min) × rand(1)

Table 2 The nominal and
optimal variables Nominal GB GA SA PS

A 0.83 0.811 0.81 0.81 0.8458

B × 107 1 0.29 0.29 0.29 0.29

C 0.95 0.94 0.94 0.94 0.94

D × 107 1 0.2921 0.29 0.29 0.29

Energy (J) 206880 177180 176900 176900 176887
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where, rand(1) is a random number between zero and one.
Note that the coefficients are not of the same order, and

resulted in serious numerical errors. We fixed this prob-
lem by conditioning them using a normalization scheme as
follows.

An = A × 103; Bn = B × 107

Cn = C × 103; Dn = D × 107

Note that for the PS algorithm, we have utilized 1)
“MaxIter” of 1200 which indicates maximum number of
iterations (300×nvar (nvar here is 4)), 2) “MinFraction-
Neighbors” of 0.25 which is minimum adaptive neighbor-
hood size, 3) “SelfAdjustment” of 1.49 which stands for
weighting of each particle’s best position when adjusting
velocity, 4) “SocialAdjustment” of 1.49 which indicates
weighting of the neighborhood’s best position when adjust-
ing velocity, and 5) “SwarmSize” of 100 (min(100, 100×
nvar)) for number of particles in the swarm.

For the GA method we have used 1) “PopulationSize”
of 50 for the size of population, 2) “Generations” of 1200
which indicates the maximum number of iterations before
the algorithm halts, 3) “MigrationFraction” of 0.2 specify-
ing the fraction of individuals in each subpopulation that
migrates to a different subpopulation, 4) “MigrationInter-
val” of 20 standing for the number of generations that take
place between migrations of individuals between subpopu-
lations, and 5) Function (TolFun) and constraints (TolCon)
tolerances of 10−12.

4 Results

The sensitivity analysis, either local or global, is an efficient
tool to investigate the effects of changes of the optimization
variables on the cost function defined. Shown in Fig. 3a–
d are results of such a local analysis (one-at-a-time (OAT)
technique) with respect to the stability bounds which we
have determined in Section 3. Note that the OAT method
analyzes the effect of one variable on the cost function at a
time while keeping the other variables constant. However,
the global sensitivity analysis uses set of samples to search
the design space.

The gradient of the cost function is numerically calcu-
lated with respect to the optimization variables as follows:

∇E =
[
∂E

∂A
,
∂E

∂B
,
∂E

∂C
,
∂E

∂D

]T

It is of great interest to observe that Fig. 3a–d reveal
significant roles of B and D, in particular D of the down-
stream set, on the considerable changes of the lumped cost
function. On the other hand, the optimization process is too
sensitive to the variables of B and D than A and C. The
physical interpretation of such an interesting situation can

be found through the dynamics of flow loads which we
will discuss in detail via Fig. 9; the downstream set plays
a more significant role in yielding the coupled efficient tra-
jectories. Note that B and D, in particular D, directly affect
angular velocities of both the valves which in turn would
lead to reduced currents used in both the sets, which we
will present and discuss via Figs. 7, 8 and 9. Note that the
results of global sensitivity analysis, as shown in Fig. 4a–
d, also confirm the highly effective roles of B and D on the
optimization process.

Table 1 contains the parameters obtained from the
experimental work we carried out for the isolated set
(Naseradinmousavi et al. 2016). Figures 5 and 6 reveal the
optimization process for the coefficients of curves fitted to
the valve angles using the genetic (GA), gradient based
(GB), simulated annealing (SA), and particle swarm (PS)
algorithms. The GB, GA, SA, and PS algorithms terminate
after 13797, 1100, 7685, and 1170 iterations, respectively, sa-
tisfying the tolerances defined for both the variables
and the lumped cost function.The computational times for the
GB, GA, SA, and PS methods are 4860 s, 720 s, 2212 s,
and 762 s, respectively. It is of great interest to observe
that all methods result in lower values of B, C, and D

with respect to their corresponding nominal values listed in
Table 2, which in turn would yield slower responses of both
the valves than those of the nominal ones. The GB, SA,
GA methods lead to lower values of A but the PS yields a
slightly higher value in comparison with the nominal one . It
is straightforward to conclude that the PS algorithm is more
efficient with respect to the computational time while it
yields the minimal energy consumption than other methods,
as shown in Table 2.

Such optimal motions would lead to considerably lower
values of the currents of both the actuation units in compar-
ison with the nominal ones, particularly for the downstream
set as shown in Figs. 7 and 8. A sudden current drop is
distinguishable for the downstream actuator (Fig. 8) at t =
34(s). The physical interpretation of such lower values of
the currents can be found through the flow dynamics (loads)
interconnected with the electromagnetic parts. We have pre-
viously established (Naseradinmousavi et al. 2016) that the
change of pipe diameter would potentially yield higher val-
ues of the hydrodynamic torque acting on the downstream
valve than that of the upstream one:

Th2

Th1
∝

(
Dv2

Dv1

)3

×
(

cv1

cv2

)2

(29)

The downstream valve is logically expected, for both
the nominal and optimal cases, to be subject to the higher
hydrodynamic torque (Naseradinmousavi and Nataraj 2013)
as shown in Fig. 9. We have also discussed the highly
important role of the hydrodynamic torque on the valves’
operations. The hydrodynamic torque acts as a helping load
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Fig. 3 The local sensitivity
analysis; the gradient of the cost
function with respect to the
optimization variables
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Fig. 4 The global sensitivity
analysis; the gradient of the cost
function with respect to the
optimization variables
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Fig. 5 The optimized A and C:
red and blue squares stand for A
and C, respectively; a GA; b
GB; c SA; d PS

0 200 400 600 800 1000 1200
0.8

0.85

0.9

0.95

1

0 5000 10000 15000
0.8

0.85

0.9

0.95

1

0 2000 4000 6000 8000
0.8

0.85

0.9

0.95

1

0 200 400 600 800 1000 1200
0.8

0.85

0.9

0.95

1

(a)

(c) (d)

(b)

Fig. 6 The optimized B and D:
red and blue squares stand for B
and D, respectively; a GA; b
GB; c SA; d PS
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Fig. 7 The optimal (dashed red line) and nominal (dashed blue line)
applied currents of the upstream set

pushing the valve to be closed and is typically effective for
when the valve angle is lower than 60◦ (Naseradinmousavi
2015; Naseradinmousavi et al. 2016); the effective range
was experimentally examined (Naseradinmousavi 2015)
confirming the helping behavior of the hydrodynamic
torque by presenting positive values. Consequently, the
higher helping torques would result in the downstream
valve’s higher rotation angles than those of the upstream
ones (for both the nominal and optimal configurations), as
shown in Fig. 10; α1no = 47◦, α2no = 52.9◦, α1op = 48◦,
and α2op = 52.73◦.

Note that Fig. 10 presents the valves’ relatively slower
motions for the optimal operations in comparison with
the nominal ones. These kinds of operationally optimized

tt=34 (s)

Fig. 8 The optimal (dashed red line) and nominal (dashed blue line)
applied currents of the downstream set
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Fig. 9 The hydrodynamic torque acting on both the valves

rotations expose both the coupled valves to the higher
hydrodynamic torques (as helping factors) in comparison
with the nominal loads, as shown in Fig. 9. This is explic-
itly distinguishable at t = 34(s) by showing the higher
hydrodynamic torques afterward and the actuators have sub-
sequently more freedom to act with significantly lower
currents, in particular, for the downstream set as it under-
goes the higher hydrodynamic load. The optimal motions
would lead us to consume a lower amount of energy as
presented in Fig. 11.

The decreased amounts of energies are spent as shown in
Fig. 11a, b, c and d. Shown in Fig. 11a, b, c and d indicate
14.3 %, 14.4 %, 14.4 %, and 14.5 % energy savings through
the GA, GB, SA, and PS algorithms, respectively. Note that

0 50 100 150
0

0.2

0.4

0.6

0.8

1

 

 

Nominal Upstream

Nominal Downstream

Optimal Upstream

Optimal Downstream

Upper Bound Upstream 

Lower Bound Upstream

Upper Bound Downstream 

Lower Bound Downstream

Fig. 10 The optimal and nominal valves’ rotation angles including
lower and upper bounds
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Fig. 11 The optimized lumped
amount of energy: a GA
(Eopm = 177180); b GB
(Eopm = 176900); c SA
(Eopm = 176900); d PS
(Eopm = 176887)
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Fig. 12 The convergence
history; a GA; b GB; c SA; d PS
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Fig. 13 The numerical step size
(SS) analysis for the gradient
based algorithm (Global Search)
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the optimization effort of the gradient-based scheme shown
in Figs. 5b, 6b and 11b, which we thoroughly addressed ear-
lier, reveals the scatter-search algorithm to generate multiple
starting points.

The four optimization schemes were repeatedly exam-
ined to avoid being trapped in probable local minima. The
negligible difference (less than 1.5 %) among the GA, GB,
SA, and PS methods would potentially indicate the global
minimum value. Figure 12a–d present convergence histo-
ries of all methods revealing the monotonically decreasing
cost function. Shown in Fig. 12b indicates the conver-
gence of the cost function despite its scatter-search pattern
(Fig. 11b).

Note that step size analysis (SS) is a necessary phase
to be carried out in order to examine the sensitivity of the
finite difference method, which has been used in the Global
Search algorithm, to the amount of step size. Figure 13a–
g present such a numerical analysis for a broad range of
SS = 10−8 (default value) to SS = 10−2 evaluating its
drastic effects on both the computational cost (iteration)
and cost function. Note that the gradient based algorithm
(13797) reveals significant gaps, with respect to the compu-
tational cost, in comparison with both the GA (1100) and PS
(1170) methods. This cumbersome issue needs to be care-
fully addressed. To address these issues, we have to find
the best value of the step size. Some useful information can
be easily extracted from Fig. 13a–g, as shown in Fig. 14a
and b.

Figure 14a reveals that the computational cost signifi-
cantly decreases by selecting higher values of the step size.
At SS = 10−4 (circled point), the computational cost is
at its minimum value (3371), which is also close to both
the GA and PS ones. For the step sizes higher than 10−4,
the computational cost is slightly increased. From another
aspect, the global minimum of the cost function is slightly
lower for SS = 10−4 (Fig. 14b) than that of the default
value shown in Fig. 13a and equals, surprisingly, to the

value of the PS algorithm. It is hence straightforward to con-
clude that the step size of SS = 10−4 is the best one to be
used in the finite difference method which we have utilized
here.

Note that the computational cost of the SA algorithm
shown in Fig. 11c is also considerably higher than those of
both the GA and PS ones. Note that metaheuristic methods,
including the GA and PS algorithms, generate a population
of points at each iteration and the best point in the popula-
tion then approaches an optimal solution. However, the SA
algorithm generates a single point at each iteration and the
sequence of points approaches an optimal solution. There-
fore, the SA method has been developed to achieve global
optimum by slowly converging to a final solution, making
downwards move hoping to reach global optimum solu-
tion. Consequently, the computational cost (7685) of the SA
algorithm looks logical with respect to both the GA and PS
methods.

It is also of great interest to evaluate the effect of
approach angle (θ ) on the amount of energy saved. Figure 15
presents an interesting aspect of the optimization prob-
lem in that the lumped amount of energy saved for both
the sets is higher for a smaller approach angle in com-
parison with a higher value. The physical interpretation
of such an energy consumption paradigm can be found
through (7) and (8). The higher approach angle yields the
higher contraction resistance (Rcon), lower P2, and subse-
quently lower pressure drop across the downstream valve.
Note that the downstream set has a higher share in mini-
mizing the energy consumption by experiencing the sudden
current drop (Fig. 8). The lower pressure drop of the down-
stream valve would result in the lower value of the helping
hydrodynamic torque as previously explained via (11). The
actuation unit of the downstream set located after a sharper
pipe contraction (a large value of θ ) has therefore less free-
dom to save the lumped energy than that of a smoother
contraction.

Fig. 14 The numerical step size
(SS) analysis: a SS vs. Iteration;
b SS vs. Energy
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Fig. 15 The amount of saved energy vs. the approach angle

5 Conclusions and future work

In this paper, we represented a novel interconnected non-
linear model of two solenoid actuated valves subject to
the different approach angles of the pipeline contraction.
We revealed the significant effects of mutual interactions
between the dynamics of the valves and the actuators in
correlations with the flow nonlinear torques. These cou-
plings among different elements were accurately formalized
to derive a sixth order dynamic model of the whole system.
We utilized particle swarm, genetic, simulated annealing,
and gradient based schemes to carry out operational opti-
mization and subsequently captured the global minimum of
the lumped cost function defined as the sum of energy used
in each set.

The principal results of this paper can be summarized as
follows.

• The approach angle has an inverse relationship with the
amount of energy saved for both the sets. The sharper
pipe contraction yields the higher value of energy con-
sumption.

• Energy can be saved by significant amounts of 17.2 %,
17 %, 16 %, 15 %, and 14.5 % for the approach angles
of 30◦, 45◦, 60◦, 75◦, and 90◦, respectively, with respect
to nominal energies consumed in the coupled valves’
motions.

• The optimal hydrodynamic torques help actuators
spend a minimum level of the lumped energy.
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