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Abstract. We propose a novel multi-scroll chaotic system captured through the Chua’s circuit. The novelty
of our proposed multi-scroll system roots on the number of scrolls to be controlled by the parameters instead
of changing the discontinuous functions repeatedly reported in the literature. We thoroughly investigate
dynamical characteristics of the system using powerful tools of the nonlinear dynamic analysis including
finite-time local Lyapunov exponents and bifurcation diagram. The practical feasibility of the proposed
multi-scroll system is revealed through its electronic realization with off-the-shelf components.

1 Introduction

The studies on chaotic systems have received considerable attention due to their broad applications from fluid flow
network to circuit design [1]. Among those chaotic systems, those with multi-scroll attractors are important since they
can be utilized in many engineering applications [2-11]. Many efforts were carried out, within the last two decades,
to address such multi-scroll attractors [2-6] and their applications in secure communications, circuit design, FPGA
implementation, information processing, and encryption [7-11]. Chua and Komuro proposed a two-scroll attractor
n [12]. Madan [13] carried out a comprehensive analysis for the properties and modifications of Chua’s circuit, which
led to new configurations to create various complex multi-scroll chaotic attractors using simple circuits. Suykens and
Vandewalle [14] proposed a class of multi-scroll attractors with a single set of mathematical functions.

Note that the multi-scroll attractors are typically obtained through injecting several equilibria into a dissipative
system, such that scrolls are generated around each fixed-point. However, there are known multi-scroll attractors which
are not formed by unstable manifolds of unstable equilibria [13,15,16]. They usually belong to the category of systems
with hidden attractors [17-21].

Barajas-Ramirez [16] presented a simple strategy to design multi-scroll attractors with desirable equilibrium points’
locations in addition to revealing the transitions expected in the global dynamics. In addition to piecewise linear func-
tions [22,23], there are some efforts focused on saturated [24], trigonometric, absolute value, polynomial, hyperbolic [25],
modulation, sign, and nonlinear hysteresis functions [26]. Lu and Chen [27] studied different design methodologies to
generate multi-scroll attractors and also discussed their potential applications.

All these research efforts revealed function-dependent multi-scroll systems which, as expected, need individual
functions to generate multiple scrolls motivating us to ask the following critical questions: 1) Why should the multi-
scroll attractor be function-dependent? and 2) Why should not be parameter-dependent? Motivated by these questions,
we modify Chua’s circuit and, to the best of our knowledge, propose the first parameter-controlled multi-scroll attractor.
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Table 1. Functions for multiscroll generation.

S.No. Function type for multiscroll Reference
1 piecewise linear function [22,23]
2 saturation function [24]
3 trigonometric function [25]
4 polynomial function [25]
5 hyperbolic function [25]
6 hysteresis function [26]
7 signum function [51]
8 sawtooth function [30]
9 fixed function with variable parameter this paper

Some of the function-dependent multi-scroll attractors are compared against the one proposed in this paper as in
table 1.

2 Parametrically controlled multi-scroll chaotic attractor (PCMCA)

The classical Chua’s system [12] is described by the following state equations:

j::a(y—;p—f(x)),
y:.fC—y+Z7

where the nonlinear function f(z) is defined as

br+a—0b forx>1
f(z) =1 ax for —1<z<1 (2)
br—a+b forax<-—1

This system can generate hidden one-scroll and two-scroll attractors. Chua’s circuit generates a two-scroll attractor [28,
29], e.g. fora=9,6 = &70, a = —1.14, and b = —0.7. We here formulate a multi-scroll attractor from Chua’s system (1)
by replacing the piecewise linear function, as shown in eq. (3), and also introducing a control parameter ¢ through the
state of z in eq. (1). The proposed system becomes as in eq. (4).

f(z) = sgn(z) + sgn(x + b) + sgn(z — b) + sgn(x + 2b) + sgn(z — 2b), (3)
i=g(y—azx+f(z)) —c
y=x—-y+=z
Z = —dy. (4)

Note that there are many studies focused on multi-scroll attractors formulated by modifying Chua’s circuit [30-32],
but all employ multiple piecewise linear functions [7,27,33-38]. The novelty of our proposed multi-scroll system roots
on the number of scrolls to be controlled by the parameters instead of changing the piecewise linear function. The
proposed system is expectedly simple considering the number of terms with respect to the other similar types of
multi-scroll systems, which have at least five scrolls; the number of functions required to generate our multi-scroll
attractor is one. Therefore, we introduce a new chaotic system based on one of the criteria described in [39].

Table 2 presents a variety of parameters generating different multi-scroll attractors. One may examine other
combinations of the parameters which, potentially, lead to such multi-scroll attractors although the maximum scroll
may not exceed six due to a restriction for the available thresholds in f(x), which is five.

For the initial conditions [0.1,0,0.1] and parameters’ values listed in table 1, the phase portraits are shown in

figs. 1(a)—(e).
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Table 2. The different cases for the system (4).

Multi-scroll attractor Parameters Figures
a b g d c
two-scroll 0.3 7 9 15 2.5 la
three-scroll 0.3 7 9 15 1.5 1b
four-scroll 0.3 7 9 15 1 lc
five-scroll 0.3 7 10 12.5 0.4 1d
six-scroll 0.3 7 10 12 0 le

-20 =10 0 10 20

Fig. 1. The 2D (X-Y plane) phase portraits of the PCMCA.

3 Dynamical properties of the PCMCA

The finite-time Lyapunov Exponents (LEs) of the PCMCA are calculated using Wolf’s algorithm [40] for 100000s and
the initial conditions given as [0.1,0,0.1]. It is important to be careful about the numerical calculation of Lyapunov
exponents, since improper use of usual methods may cause some issues [41-44]. To calculate the LEs, the signum
function is replaced with tanh(a;x) to avoid numerical singularities expected. Using higher values of a1 yields a more
accurate representation of the signum function, shown in fig. 2(a), although it will potentially lead to cumbersome
complexities for real-time implementations in both analog and digital circuits. Therefore, we select a; = 100 for the
calculation of LEs, whereas a negligible difference (< 0.0006) is noted using a; = 100 and a; = 500. Shown in fig. 2(b)
are the finite-time local Lyapunov exponents of the mentioned system calculated for various values of a;. The LEs
and the corresponding Kaplan-Yorke dimension (Dgy ), for the multi-scroll systems, are given in table 2.

The dynamic behavior of the PCMCA system is visualized by plotting its bifurcation diagram wvs. ¢, as the control
parameter, and using the other parameters listed in table 3; for the two-scroll system. Shown in fig. 3 are the bifurcation
diagrams of the PCMCA system. The blue dots indicate the bifurcation derived using forward continuation (by
increasing the control parameter with reinitializing the initial conditions to the end values of state variables in every
iteration), while the red dots stand for the bifurcation captured through backward continuation (by decreasing the
control parameter with reinitializing the initial conditions to the end values of state variables in every iteration). Note
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Fig. 2. (a): The signum function and tanh(aiz); (b): The finite-time local Lyapunov exponents of the two-scroll system
calculated for various values of a;.

Table 3. The finite-time local Lyapunov exponents of the PCMCA system.

Multi-scroll attractor LEs Dky
two-scroll 0.347, 0, —3.625 2.095
three-scroll 0.347, 0, —3.623 2.095
four-scroll 0.348, 0, —3.599 2.096
five-scroll 0.726, 0, —3.584 2.2
six-scroll 0.754, 0, —3.466 2.217

0
10 10.5 1" 11.5 12 125 13 13.5 14

Fig. 3. (a) The bifurcation diagram of the PCMCA system wvs. the control parameter with the range of 0 < ¢ < 14 for the
two-scroll case; (b) the diagram within 12.6 < ¢ < 13.2.

that we plotted local maxima of the state variable x. Figure 3(a) presents the bifurcation diagram wvs. the control
parameter with the range of 0 < ¢ < 14. Figure 3(b) shows the diagram for the range of 10 < ¢ < 14 revealing the
coexistence of a limit cycle with a chaotic attractor within 12.6 < ¢ < 13.2. Also, it is of a great interest to observe the
coexistence of a single-scroll chaotic attractor (red) and a period-1 limit cycle (blue) for initial conditions [—18, 5, 34]
and [—0.1,0,0.1], respectively, and ¢ = 12.83 as shown in fig. 4. Note that such a multistability property makes our
proposed system much more interesting to be utilized, since the multistable systems, with coexisting attractors, are
highly important in nonlinear dynamics [45-50].
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Fig. 4. The coexistence of a single-scroll chaotic attractor (red) and a period-1 limit cycle (blue) for initial conditions [—18, 5, 34]
and [—0.1,0,0.1], respectively, and ¢ = 12.83.

4 Electronic circuit design of the four-scroll PCMCA system for engineering applications

We here design the electronic circuit, based on OP-AMP (Operational Amplifier) devices of the four-scroll parametri-
cally controlled multi-scroll chaotic attractor (PCMCA), to be employed in broad engineering applications. We utilize
OrCAD PSpice program in designing the electronic circuit. It should be noted that while PSpice software is based on
actual circuit components, it still suffers from the discretization and its usage can lead to wrong conclusions especially
for hidden attractors [21]. The values of the state variables « and z of the four-scroll PCMCA system vary between
—25V to 30 V. Note that the maximum supply voltage of the OP-AMP device used in the circuit is +18 V4.. Therefore,
the values and initial conditions of state variables x and z are scaled by 5 as in eq. (5). Also, the system and piecewise
linear function (f) scaled by 5 are represented in eq. (6). We rename the state variables of the scaled system as X, Y,
and Z. The initial conditions of the scaled system are Xy = 0.02, Yy = 0.02, and Z; = 0.02.

X =

ol 8

Z = g = 7=
X =—18Y +2.7X —1.8f +0.2,

Y =-5X+Y 52,

Z =13Y,

f =sgn(z) +sgn(z + 1.4) + sgn(z — 1.4) + sgn(z + 2.8) + sgn(z — 2.8). (6)

Figure 5 presents a schematic of the electronic circuit designed. The electronic circuit has the following analog devices:
1) six TL084 ICs, 2) three capacitors, and 3) forty-eight resistors. The supply voltage of the electronic circuit is
+12 V.. The values for the electronic components of the circuit (fig. 5) are given in table 4.

The state-space equations of the electronic circuit are as

Y 1.8 S 1 1.8 + 0.2
R3sCh R37Ch R39Cy RyC1’
. 1 1 1
V= X+ y - A
R46Co RysCo Ry7Co
1
7 = Y. 7
Ry43C3 0

Shown in fig. 6 are the state variables (X,Y,Z) of the electronic circuit designed for the scaled four-scroll PCMCA
system (6). The state variables vary as =5V < X <3V, -2V <Y < 2V, and -3V < Z < 6V. Therefore, it is
straightforward to conclude that the scaled system (6) is practically applicable in the field of electronic circuits.
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Fig. 5. A schematic for the electronic circuit of the four-scroll PCMCA system.

Table 4. The values for the electronic components of the circuit.

Device name Value
U1, U2, U3, U4, U5, U6 TLO084 IC
C1, C2, C3 10nF
R1, R7, R13, R19, R25 9.4k
R2, R3, R4, R5, R6, R8, R9, R10, R11, R12,
R14, R15, R16, R17, R18, R20, R21, R22, 1k
R230, R24, R26
R27, R33 18 k2
R28, R29, R30, R31, R32, R34, R41, R42, R43, R44 10k
R35 11.8 k2
R36 200 €2
R37 14.8 k2
R38, R39, R40, R45 40 k2
R46, R47 8k
R48 13.3 k2
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Fig. 6. The output signals of the electronic circuit designed as in fig. 5: (a) X; (b) Y; (c) Z.
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Fig. 7. The phase portraits of the electronic circuit are designed as in fig. 5.

Figure 7 presents the phase portraits of the electronic circuit. It is worth mentioning that the phase portrait of the
four-scroll PCMCA system (fig. 1(c)) is the same as the phase portrait of the electronic circuit designed (fig. 7(a)).
Subsequently, we can easily conclude that, based the electronic circuit designed, the PCMCA system is applicable in
broad engineering problems.

5 Conclusions

In this paper, we proposed a novel multi-scroll chaotic system whose scrolls were parametrically controlled instead
of being function-dependent. The significant advantage of such a system design was visualized through its real-time
implementation in hardware, whereas a single function expectedly requires less resources to be implemented. Also,
the scrolls were controlled by only changing the parameters, which here was achieved through varying the discrete
components. The proposed system revealed rich dynamical behaviors, which we thoroughly investigated employing
the powerful tools of finite-tine local Lyapunov exponents and bifurcation diagram. We captured the coexistence of
a limit cycle with a chaotic attractor, in addition to the coexistence of a single-scroll chaotic attractor and a period-
1 limit cycle, subject to some initial conditions and crucial values of the control parameter c¢. This led us to the
multistability aspect of our proposed system, which is counted as a highly important property for broad nonlinear
dynamical systems. Finally, we realized the system proposed as electronic circuits using off-the-shelf components and
then presented simulation results to evaluate our novel circuit design. Such multiscroll chaotic systems which could
produce different scrolls for just a simple change in a resistance or capacitance (in analog circuits) can be very useful
in chaos-based communication systems.
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