
Peiman Naseradinmousavi
Assistant Professor

Department of Mechanical Engineering,

San Diego State University,

San Diego, CA 92115

e-mail: pnaseradinmousavi@mail.sdsu.edu;

peiman.n.mousavi@gmail.com

Miroslav Krstić
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Design Optimization of
Dynamically Coupled Actuated
Butterfly Valves Subject to a
Sudden Contraction
In this effort, we present novel nonlinear modeling of two solenoid actuated butterfly
valves subject to a sudden contraction and then develop an optimal configuration in the
presence of highly coupled nonlinear dynamics. The valves are used in the so-called
smart systems employed in a wide range of applications including bioengineering, medi-
cine, and engineering fields. Typically, thousands of the actuated valves operate together
to regulate the amount of flow and also to avoid probable catastrophic disasters which
have been observed in practice. We focus on minimizing the amount of energy used in the
system as one of the most critical design criteria to yield an efficient operation. We opti-
mize the actuation subsystems interacting with the highly nonlinear flow loads in order to
minimize the amount of energy consumed. The contribution of this work is the inclusion
of coupled nonlinearities of electromechanical valve systems to optimize the actuation
units. Stochastic, heuristic, and gradient based algorithms are utilized in seeking the opti-
mal design of two sets. The results indicate that substantial amount of energy can be
saved by an intelligent design that helps select parameters carefully and also uses flow
torques to augment the closing efforts. [DOI: 10.1115/1.4032215]

1 Introduction

Generally smart systems have received much attention for a
wide range of applications to be operated efficiently with respect
to the amount of energy used in the actuator units. The U.S. Navy
has particularly focused on developing reliable and energy effi-
cient systems to minimize the cost of operation and also to
increase crew safety through a stable performance.

Automation systems typically consist of actuators, sensors, con-
trollers, valves, piping, electrical cabling, and communication wir-
ing. Many types of actuator-valve systems are in use [1,2]. One of
the most critical systems to be utilized in cooling purposes is the
so-called smart valve system. The main objective of the smart
valves is to shut down automatically in case of breakage and to
reroute the flow as needed.

These sets include many interdisciplinary components interact-
ing with each other through highly coupled nonlinear dynamics.
We have previously analyzed a solenoid actuated butterfly valve
dealing with electromagnetics and fluid mechanics [3–6]. High fi-
delity mathematical models were developed for both the single
and coupled actuated valves. For the single set [3], our focus was
on developing a nonlinear model to analyze the complicated
physics of the system to be used in dynamic analysis [4] and opti-
mization [5].

We have captured transient chaotic and crisis dynamics of the
single valve actuator for some critical parameters helping to
define safe domains of operation. Determining the safe opera-
tional domain through the stability map helped us define the lower
and upper bounds of the optimization tasks [5] and operation,
which reduced the amount of energy used in the single set. The
first phase was to optimize the system design, particularly the
actuation unit coupled with the mechanical and fluid parts. We
then optimized the valve operation to be closed in an efficient
fashion yielding the minimum energy consumption. In both the
optimization schemes, the roles of flow torques are important to
help close the valve with minimal energy.

It is of great interest to emphasize that the smart valve systems
contain many of the actuated sets, and hence, they would not be
independent of each other. These dependencies have been
observed in practice and probable malfunction of each set may
expectedly result in the catastrophic behavior of the whole system.
Therefore, we have developed the coupled dynamic model of two
actuated valves operating in series [6]. A periodic noise was
applied on the upstream valve to evaluate its effects on the down-
stream set of the valve and actuator. A powerful tool of the non-
linear dynamic analysis (power spectrum) was then employed to
present the same oscillatory response of the downstream set with
that of the upstream one; as expected, the downstream set revealed
the same frequencies of response with a smaller amplitude. Any
slight dynamic change of the upstream set, on the other hand, was
shown to be effective for the downstream set through the media
trapped between two valves.

Capturing the coupled dynamics of two actuated valves would
help us optimize the design of both the actuation units in which an
interesting connection can be distinguished between the currents.
The currents are subject to the interconnected flow torques and
pressure drops of the valves. Note that, for the single set, we
neglected the interactions among the actuators/valves operating in
series although the magnetic parts are remarkably affected by the
dynamics of the neighbor sets [6].

Important nonlinear phenomena in electromechanical systems
have also received considerable attention. Belato et al. [7] ana-
lyzed chaotic vibrations of an electromechanical system which
includes a nonlinear dynamic system consisting of a simple pen-
dulum whose support point is vibrated along a horizontal guide by
a two-bar linkage driven by a DC motor with limited power. Non-
linear dynamic analysis of a micro-electromechanical system
(MEMS) has been carried out by Xie et al. [8] based on an invari-
ant manifold method proposed by Boivin et al. [9]. Ge and Lin
[10] have studied dynamical analysis of an electromechanical
gyrostat system subjected to an external disturbance.

Optimization of solenoid actuators has recently received some
attention. Baek-Ju and Eun-Woong [11] have focused on the opti-
mal design of solenoid actuators using a nonmagnetic ring. Elec-
tromagnetic actuator-current development has been carried out by
Hameyer and Nienhaus [12], and Sung et al. [13] studied the
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development of a design process for on-off type of solenoid actua-
tors. Kajima [14] has considered a dynamic model of the plunger
type of solenoids. Karr and Scott [15] utilized the genetic algorithm
to optimize an antiresonant electromechanical controller operating
in a frequency domain. Mahdi [16] carried out optimization of the
PID controller parameters to operate nonlinear electromechanical
actuator efficiently. A coupled electromechanical optimization of
the cost of high speed railway overheads has been carried out by
Jimenez-Octavio et al. [17]. Nowak [18] has focused on presenting
an algorithm of the optimization of the dynamic parameters of an
electromagnetic linear actuator operating in error-actuated control
system. Other contributions in design optimization of electrome-
chanical actuators include Refs. [19–25].

This paper begins with a brief nonlinear dynamic model of the
actuators/valves operating in series but is somewhat different
from the model reported in Ref. [6] due to the sudden contraction.
In practice, multiple contractions and expansions exist through the
pipeline. The coupled modeling and then analysis of these config-
urations would hence be necessary to capture highly nonlinear
mutual interactions among the sets. Then, the optimal design pro-
cess is formulated to help select the appropriate actuator parame-
ters coupled with the electromagnetical, mechanical, and fluid
parts in order to yield an energy efficient system. Most electrome-
chanical systems used in the flow control lines have been studied
by neglecting the interconnections imposed by other sets. From
another aspect, the linearization method, as one of the simplest
practices, is widely being utilized in many of analytical investiga-
tions particularly for systems with a higher level of complexity
and coupling. The results of both the isolated and linearized analy-
ses may expectedly be valid within a narrow domain of operation
leading typically to significant inaccuracy and unreliability of the
results. The contribution of this work is to optimize both the actu-
ated valves dynamically coupled in different aspects while our
previous effort [5] was on optimizing a single unit by neglecting
its dynamic coupling with another set. A considerable amount of
energy saving was obtained via the isolated analysis but would
obviously could be affected by the dynamic interactions among
sets. In this effort, a lumped cost function will be minimized, with
respect to the stability and physical constraints, using global opti-
mization tools in order to obtain efficient design and operation of
the actuation units and valves, respectively. This would provide
an interesting opportunity to utilize the coupled optimization
scheme, which is being developed here, for other large-scale net-
works including oil and gas fields, municipal piping systems, pe-
trochemical plants, and aerospace. The need for optimization
clearly exists for such networks in order to improve efficiency.

2 Mathematical Modeling

The system being optimized consists of two solenoid actuated
butterfly valves operating in series as shown in Fig. 1(a). The
actuators are connected to the valve stems through rack and pinion

arrangements. Applying electric voltages (AC or DC), the mag-
netic forces move the plungers and consequently rotate both the
valves to desirable angles. Note that we utilize a return spring to
open the valves; this is a common practice among manufacturers.

The mathematical modeling of such a coupled system obvi-
ously needs some simplifying assumptions to avoid useless and
cumbersome numerical calculations. The first one is to neglect
magnetic diffusion. During the diffusion time, there is no power-
ful magnetic force to move the plunger and the valve subsequently
would not rotate in that time interval. Note that the diffusion time
has an inverse relationship with the amount of current [3] such
that a large value of the current yields a negligible diffusion time
and vice versa. We apply a current of i¼ 13.3 (A) for both the
actuators yielding the diffusion time of sd � 6 ðmsÞ which can be
easily neglected considering the nominal operation time.

The second assumption is to utilize laminar flow for both the
valves. This is a common practice to avoid the tedious numerical
calculations of a turbulent regime and also to develop an analyti-
cal model to be used in the nonlinear dynamic analysis. The
dynamic analysis needs to be done to capture the dangerous
responses of the system [4]. The validity of laminar flow assump-
tion needs to be examined particularly with respect to the amounts
of inlet velocity and pipe diameter given in Table 1. Using these
values, the Reynolds number indicates the existence of the turbu-
lent regime and questions the assumption of laminar flow. We
hence carried out the experimental work shown in Fig. 2 to exam-
ine the validity of the assumption. Note that the flow loads includ-
ing hydrodynamic and bearing ones are the most important
torques affecting the valves’ and actuators’ interconnected dy-
namics. The analytical formulas developed for both the torques
have been based on the assumption of laminar flow. We have
therefore carried out the experimental work in order to examine
the accuracy of the torques’ mathematical formulas developed for
a symmetric valve. Figure 3 shows the total torque, which is the
sum of both the hydrodynamic and bearing ones, for the inlet ve-
locity of v � 2:7ðm=sÞ and valve diameter of Dv ¼ 2 ðin:Þ reveal-
ing an acceptable consistency [26] among the experimental data
and the formula utilized in the analytical studies based on the lam-
inar flow. This also gives us the confidence to use the analytically
(and computationally) derived mathematical expressions for the
hydrodynamic and bearing torques. We previously discussed the
important roles of both the torques on the dynamic response of a
single actuated valve and subsequently such effects are expected
to be observed for the coupled sets [6].

We modeled the coupled system as two changing resistors for
the opening/closing valves plus three constant ones in the middle
of the valves, shown in Fig. 1(b). Two of the constant resistors
stand for head losses and another one is due to the sudden contrac-
tion. The inlet and outlet pressures are supposed to be known.
Applying the assumption stated for the dominant laminar flow, the
Hagen–Poiseuille [27] and Borda–Carnot [28] formulas express
the pressure drops between two valves (points 1 and 2)

Fig. 1 (a) Two actuated butterfly valves subject to the sudden contraction and (b) a model of
two valves in series without actuation
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P1 � Pcon1 ¼
128lf L1

pD4
v1|fflfflfflffl{zfflfflfflffl}

RL1

qv (1)

Pcon1 � Pcon2 ¼
1

2
Kconqv2

out (2)

Pcon2 � P2 ¼
128lf L2

pD4
v2|fflfflfflffl{zfflfflfflffl}

RL2

qv (3)

where lf is the fluid dynamic viscosity, Dv1 and Dv2 stand for the
valves’ diameters, qv indicates the volumetric flow rate, L1 and L2

are the pipe lengths before and after contraction, Pcon1 and Pcon2

indicate the flow pressures before and after contraction, and RL1

and RL2 are the constant resistances. Kcon is easily calculated as
follows:

Kcon ¼ 0:5 1� b2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin
h
2

� �s
(4)

where h is the angle of approach and b indicates the ratio of minor
and major diameters ðDv2=Dv1Þ. Using the parameters given in
Table 1, we obtain Kcon¼ 0.2562. We rewrite Eq. (2) as the
following:

Pcon1 � Pcon2 ¼
1

2
Kconqv2

out

¼ 8Kcon

p2D4
v2

q|fflfflfflffl{zfflfflfflffl}
Rcon

p2D4
v2v2

out

16|fflfflfflfflfflffl{zfflfflfflfflfflffl}
q2

v

¼ Rconq2
v

(5)

where Rcon is the resistance due to the sudden contraction. Adding
Eqs. (1)–(3) and (5) easily yields

P1 � P2 ¼ ½RL1 þ RL2 þ Rconqv�qv (6)

The valve’s “resistance (R)” and “coefficient (cv)” are the most
important parameters of the regulating valves including butterfly
ones. The valve’s resistance and coefficient are nonlinear func-
tions of the valve rotation angle [29]

Ri aið Þ ¼
891D4

vi

c2
vi aið Þ

; i ¼ 1; 2 (7)

The pressure drop across the valve is stated as follows [30]:

DPiðaiÞ ¼ 0:5RiðaiÞqv2 (8)

where a indicates the valve rotation angle, v is the flow velocity,
and q stands for the density of the media. Rewriting Eq. (8) yields

DPi aið Þ ¼
p2D4

viv
2

16|fflfflfflffl{zfflfflfflffl}
q2

v

8� Ri aið Þq
p2D4

vi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Rni aið Þ

¼ Rni aið Þq2
v (9)

We established that both the hydrodynamic (Th) and bearing (Tb)
torques [30,31] are too sensitive to the pressure drop obtained via
Eq. (9) leading us to reformulate them to be stated as follows:

fi aið Þ ¼
16Tci aið Þ

3p 1� Ccci aið Þ 1�sin aið Þð Þ
2

� 	2
(10)

Thi ¼
16Tci aið ÞD3

viDPi

3p 1�
Ccci aið Þ 1� sin aið Þ

� �
2

� �2
¼ fi aið ÞD3

viDPi (11)

Tbi ¼ 0:5AdDPilDs ¼ CiDPi (12)

where l is the friction coefficient of the bearing area, Ds indicates
the stem diameter of the valve, Ci ¼ ðp=8ÞlD2

viDs, and Tci and
Ccci stand for the hydrodynamic torque and the sum of upper and
lower contraction coefficients, respectively; they depend on the
valve rotation angle [3].

The nonlinear dynamic analysis carried out for a set of the actu-
ator/valve [4] provides the criteria needed to determine the bounds
of the optimization tasks; the stability analysis obviously needs to

Table 1 The system parameters

q 1000ðkg=m3Þ v 3ðm=sÞ

l 0.5 Pin 256 (kPa)
J1;2 0:104� 10�1 (kg m2) bd1;d2 6420 N�m s

rad

N1 3000 C11;22 1:56� 106ðH�1Þ
gm1;m2 0.1 (m) V1;2 24 (V)

Dv1 0.2032 (m) Dv2 0.127 (m)

Ds1;s2 0.01 (m) Pout 2 (kPa)

k1;2 60(N �m�1) C21;22 6:32� 108ðH�1Þ
L1 2 (m) L2 1 (m)

lf 0.018 (kg m�1 s�1) R1;2 1.8 (X)

r1;2 0.05 (m) h 90deg

N2 3000

Fig. 2 The experimental work carried out for a single set
Fig. 3 The experimental and analytical total torques for the
inlet velocity of v � 2:7ðm=sÞ and valve diameter of Dv 5 2 ðin:Þ
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be done using an analytical model. We would utilize the same
practice for the coupled system with the aid of fitting suitable
curves on cvi and Rni in order to model the system analytically.
For our case study of Dv1 ¼ 8 (in.) and Dv2 ¼ 5 (in.), the valves’
coefficients and resistances are formulated as follows:

cv1ða1Þ ¼ p1a
3
1 þ q1a

2
1 þ o1a1 þ s1 (13)

cv2ða2Þ ¼ p2a
3
2 þ q2a

2
2 þ o2a2 þ s2 (14)

Rn1 a1ð Þ ¼
e1

p1a3
1 þ q1a2

1 þ o1a1 þ s1

� �2
(15)

Rn2 a2ð Þ ¼
e2

p2a3
2 þ q2a2

2 þ o2a2 þ s2

� �2
(16)

where e1 ¼ 7:2� 105; e2 ¼ 4:51� 105; p1 ¼ 461:9; p2 ¼ 161:84;
q1 ¼ �405:4; q2 ¼ �110:53; o1 ¼ �1831; o2 ¼ �695:1; s1 ¼
2207, and s2 ¼ 807:57. Note that the curves were selected based
on the decremental and incremental profiles of the valves’ coeffi-
cients and resistances, respectively, in which we have reported in
Refs. [6] and [26]. Clearly the mass continuity principle implies
qin ¼ qout ¼ qv. Rewriting Eq. (9) then yields

Pin � P1

Rn1 a1ð Þ
¼ P2 � Pout

Rn2 a2ð Þ
(17)

Rn1P2 þ Rn2P1 ¼ Rn2Pin þ Rn1Pout (18)

One can easily derive the coupled P1 and P2 terms by combining
Eqs. (6) and (18) as follows:

P1 ¼
Rn2Pin þ Rn1Pout þ Rn1 RL1 þ RL2 þ Rconqvð Þqv

Rn1 þ Rn2ð Þ (19)

P2 ¼
Rn2Pin þ Rn1Pout � Rn2 RL1 þ RL2 þ Rconqvð Þqv

Rn1 þ Rn2ð Þ (20)

Equations (19) and (20) state the roles of Rn1; Rn2; RL1; RL2, and
Rcon on the variations of P1 and P2 with the given values of Pin,
Pout, and qv, as observed in the practice. Therefore, it is fairly
straightforward to determine the dynamic sensitivity of the down-
stream set to any slight changes of the upstream one. We then can
rewrite both the hydrodynamic and bearing torques dependency
on all the resistances as follows:

Thi ¼ fiðaiÞD3
viDPiðRn1;Rn2;RL1;RL2;RconÞ (21)

Tbi ¼ CiDPiðRn1;Rn2;RL1;RL2;RconÞ (22)

Note that fi is a function of many nonlinear terms which include
the changing Tci and Ccci in addition to the valve angles. For a sys-
tematic analysis of the whole system, the following functions are
fitted to the D3

vifi of each valve [6,26]:

Th1 ¼ a1a1eb1a1:1
1 � c1ed1a1

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
D3

v1
f1

Pin � P1ð Þ

¼ a1a1eb1a1:1
1 � c1ed1a1

� �
�

e1

p1a3
1 þ q1a2

1 þ o1a1 þ s1

� �2

X2

i¼1

ei

pia3
i þ qia2

i þ oiai þ si

� �2

� Pin � Pout � RL1 þ RL2 þ Rconqvð Þqvð Þ
(23)

Th2 ¼ a01a2eb0
1
a1:1

2 � c01ed0
1
a2

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D3
v2

f2

P2 � Poutð Þ

¼ a01a2eb01a
1:1
2 � c01ed01a2

� 	
�

e2

p2a3
2 þ q2a2

2 þ o2a2 þ s2

� �2

X2

i¼1

ei

pia3
i þ qia2

i þ oiai þ si

� �2

� Pin � Pout � RL1 þ RL2 þ Rconqvð Þqvð Þ
(24)

where a1 ¼ 0:4249; a01 ¼ 0:1022; b1 ¼ �18:52; b01 ¼ �17:0795;
c1 ¼ �7:823� 10�4; c01 ¼ �2� 10�4; d1 ¼ �1:084, and d01
¼ �1:0973. We also replace the sign function (signð _aiÞ), which is
being used in the bearing torque statement to present its resistance
role, by the smooth function tanhðK _aiÞ for ease of analysis.
Figures 4(a) and 4(b) are the results of the stability analysis of the
coupled system; we will report this effort as another article.

The state variables are defined as follows:

½z1; z2; z3; z4; z5; z6� ¼ ½a1; _a1; i1; a2; _a2; i2�

where z1 ¼ a1; z2 ¼ _a1, and z3¼ i1 stand for the upstream valve’s
rotation angle, angular velocity, and actuator current, respectively.
z4 ¼ a2; z5 ¼ _a2, and z6¼ i2 indicate the downstream valve’s rotation
angle, angular velocity, and actuator current, respectively. We have
previously developed the magnetic force and rate of current terms [3]
which are used in deriving the state space equations as follows:

Fmi ¼
C2iN

2
i i2

i

2 C1i þ C2i gmi � xið Þ
� �2

(25)

Fig. 4 (a) Chaotic dynamics of the valves/actuators and (b) Lyapunov exponents indicating
the chaotic dynamics of the system
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dii
dt
¼

Vi � Riiið Þ C1i þ C2i gmi � xið Þ
� �

N2
i

� C2iii _xi

C1i þ C2i gmi � xið Þ
� � (26)

_z1 ¼ z2 (27)

_z2¼
1

J1

r1C21N2
1z2

3

2 C11þC21 gm1� r1z1ð Þ
� �2

�bd1z2�k1z1þ

Pin�Pout� RL1þRL2þRconqvð Þqvð Þe1

p1z3
1þq1z2

1þo1z1þ s1

� �2P
i¼1;4

ei

piz3
i þqiz2

i þoiziþ si

� �2

� a1z1eb1z1
1:1 �c1ed1z1

� �
�C1� tanh Kz2ð Þ

h i
2
66664

3
77775

(28)

_z3 ¼
V1 � R1z3ð Þ C11 þ C21 gm1 � r1z1ð Þ

� �
N2

1

�
r1C21z3z2

C11 þ C21 gm1 � r1z1ð Þ
� � (29)

_z4 ¼ z5 (30)

_z5¼
1

J2

r2C22N2
2z2

6

2 C12þC22 gm2�r2z4ð Þ
� �2

�bd2z5�k2z4þ

Pin�Pout� RL1þRL2þRconqvð Þqvð Þe2

p2z3
4þq2z2

4þo2z4þs2

� �2P
i¼1;4

ei

piz
3
i þqiz2

i þoiziþsi

� �2

� a01z4eb0
1
z4

1:1�c01ed0
1
z4

� 	
�C2� tanh Kz5ð Þ

h i
2
66664

3
77775

(31)

_z6 ¼
V2 � R2z6ð Þ C12 þ C22 gm2 � r2z4ð Þ

� �
N2

2

�

r2C22z5z6

C12 þ C22 gm2 � r2z4ð Þ
� � (32)

where x indicates the plunger displacement, r is the radius of the
pinion, Fm stands for the motive force, C1 and C2 are the reluctan-
ces of the magnetic path without air gap and that of the air gap,
respectively, N is the number of coils, i indicates the applied cur-
rent, gm is the nominal airgap, J is the polar moment of inertia of
the valve’s disk, bd is the equivalent torsional damping, Kt indi-
cates the equivalent torsional stiffness, V is the supply voltage,
and R indicates the electrical resistance of coil. Note that K¼ 1
resulted in a good approximation to the sign function. Equations
(27)–(32) constitute the sixth order dynamic model of the coupled
actuators/valves. Figure 5 is a block diagram of the interconnected
sets to simply visualize Eqs. (27)–(32). Note that the analytical
model would not be valid at z1 ¼ 90deg and z4 ¼ 90deg [3–6,30].

3 Optimal Design

Efficient optimization schemes are needed to be utilized in min-
imizing the amount of energy used by the whole system with
respect to the stability criteria we have reported earlier [4,32].
Neglecting the parameter constraints established through the sta-
bility analysis would result in the failure of the whole system
shown in Fig. 4(a) revealing the chaotic dynamics of both the

valves/actuators for a set of critical parameters; two positive Lya-
punov exponents shown in Fig. 4(b) confirm the chaotic behavior
of the system. Some critical values of the equivalent viscous
damping and friction coefficient of the bearing area
(bdi ¼ 10�3; li ¼ 5� 10�2) lead to chaotic behavior, the details
of which will be presented as another article.

The problem is one of constrained optimization with possibly
several local minima. Therefore, we need to utilize efficient opti-
mization approaches to obtain the global minimum; the con-
straints are the stability and physical ones. The cost function we
wish to minimize is a sum of the energy used in both the sets

minEtot ¼
X2

i¼1

ðtf

0

Vii dt

subject to : z1 < 90 deg; z4 < 90 deg (33)

The cost function is typically determined with respect to the scale
and performance of the network. Thousands of such actuated
valves are used in the U.S. Navy fleet and a lower lumped amount
of energy consumed in the network is needed to reduce the cost of
operation. This would lead us to select a lumped cost function to
be minimized. After selecting some of the parameters as predeter-
mined, the design variables to be used in the optimization process
are chosen as follows: C11, C12, C21, and C22 are the magnetic
reluctances, gm1 and gm2 indicate the airgaps, and N1 and N2 are
the number of coils for both the actuators. We next collect the
design variables into a vector
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h1 ¼ ½C11;C12;C21;C22;N1;N2; gm1; gm2�T (34)

The state equations, as discussed earlier, need to be satisfied at all
times during the optimization process and the design variables are
subject to the following lower and upper bounds:

h1min ¼ ½0:6�106;0:6�106;3�108;3�108;3000;3000;0:065;0:065�T

(35)

h1max¼½1:6�106;1:6�106;6:5�108;6:5�108;3600;3600;0:11;0:11�T

(36)

These bounds were established based on practical system consid-
erations, stability analysis [4,26], and physical constraints. We
employ three global optimization tools including simulated
annealing (SA), genetic (GA), and gradient based algorithms to
provide a clear map of optimization efforts with respect to the
locality/globality of the cost function minima. SA was independ-
ently developed by Kirkpatrick et al. [33] and by Cerny [34].
Genetic optimization has been designed based on a heuristic
search to mimic the process of natural selection [35].

The design variables in practice are not of the same order, and
caused serious numerical errors in our initial studies. We solved
this issue by conditioning them using a normalization scheme as
follows:

Nni ¼
Ni

103
; C1in ¼

C1i

106
; C2in ¼

C2i

108
; gmin ¼ 10gmi

One of the advantages of the SA procedure is to select a new
point randomly. We hence need to set the initial guesses as ran-
dom numbers. The algorithm covers all new points to reduce the
value of the objective function. At the same time, with a certain
probability, points that increase the objective function are also
accepted. The algorithm avoids being trapped in local minima by
using points that raise the objective function value and has the
potential to search globally for more possible solutions.

Fig. 5 The block diagram of the interconnected sets

Fig. 6 The optimized C2i ; red and blue squares stand for the upstream and downstream sets,
respectively: (a) GS, (b) GA, and (c) SA

041402-6 / Vol. 138, APRIL 2016 Transactions of the ASME

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 02/19/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



The genetic algorithm is significantly more robust than other
conventional ones. It does not break down easily in the presence
of slight changes of inputs, and noise. For a large state-space, the
algorithm may potentially exhibit significantly better performance
than typical optimization techniques.

The random initial guesses we used in the optimization process
(as required by SA) are as follows:

hnr ¼ hlb þ ðhub � hlbÞ � randð0; 1Þ (37)

Fig. 7 The optimized gm: (a) GS, (b) GA, and (c) SA

Fig. 8 The optimized N: (a) GS, (b) GA, and (c) SA
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where rand(0,1) is a random number between zero and one. We
developed the algorithm in MATLAB and captured many interesting
results.

4 Results

The predetermined parameters given in Table 1 were obtained
from the experimental work we have done for the single set as
shown in Fig. 2. Figures 6–9 present the optimization process for
the design variables utilizing the gradient based, genetic, and SA
algorithms. The GS, genetic, and SA algorithms terminate after
8000, 1360, and 24,000 iterations, respectively, satisfying the tol-
erances defined for both the variables and the lumped cost func-
tion. All methods yield lower values of C11, C12, C21, C22, gm1,
and gm2, and higher values for the number of coils with respect to
their corresponding nominal values listed in Table 2

Fig. 9 The optimized C1i : (a) GS, (b) GA, and (c) SA

Fig. 10 The optimal and nominal magnetic forces Fig. 11 The optimal and nominal applied currents

Table 2 The nominal and optimal variables

Nominal GS GA SA

gm1ðmÞ 0.1 0.09 0.09 0.09

gm2ðmÞ 0.1 0.065 0.065 0.065

C21

108
H�1Þ
�

6.32 3.9 3.9 3.9

C22

108
H�1Þ
�

6.32 3 3 3

N1 3000 3059 3340 3012

N2 3000 3600 3600 3600
C11

106
H�1Þ
�

1.56 1.0358 0.87 1.2567

C12

106
H�1Þ
�

1.56 0.6 0.6 0.6

EtotðJÞ 25,556 22,603 22,721 22,575
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Th2

Th1

/ Dv2

Dv1

� �3

� cv1

cv2

� �2

(38)

Tb2

Tb1

/ Dv2cv1

Dv1cv2

� �2

(39)

These optimal variables to be used in the actuation parts are
considerably more efficient in that higher and lower values of the
actuation forces and currents are obtained as shown in Figs. 10
and 11, respectively. Note that, for both the nominal and optimal
configurations, the downstream actuator’s currents and forces are
lower and higher, respectively, than those of the upstream ones,
particularly for the optimal sets. This can be potentially explained
as due to the sudden contraction between the valves. The change
of pipe diameter would potentially yield higher values of both the
hydrodynamic and bearing torques acting on the downstream
valve based on Eqs. (7)–(9), (21), and (22).

The downstream set is hence expected, for both the nominal
and optimal cases, to be subject to the higher hydrodynamic and
bearing torques for the approximate ranges of 0 � ai � 60 deg
and ai 	 60 deg [5], respectively, as shown in Fig. 12. From
another aspect, we previously established the important roles of
both the hydrodynamic and bearing torques on the valve motions.
The hydrodynamic torque is a helping load to push the valve to be
closed and is typically effective for when the valve angle is lower

than 60 deg [6]. Note that the bearing torque is a resistance load
and remarkably becomes effective for the valve’s angle higher
than that of 60 deg; we validated the effective ranges experimen-
tally [6] which indicate the helping and resisting natures of the
hydrodynamic and bearing torques by presenting positive and
negative values, respectively. Consequently, the higher helping
loads would lead to the downstream valve’s higher rotation
angles than those of the upstream ones, as shown in Fig. 13;
a1no ¼ 22 deg; a2no ¼ 26 deg; a1op ¼ 63 deg, and a2op ¼ 75 deg.
The higher rotation angles minimize the denominator of the mag-
netic force term stated in Eq. (25) and a slightly higher value of
the force can be observed for the nominal downstream set and
considerably higher amount for the optimal one.

The optimal design variables which include smaller values of
C1i ’s, C2i ’s, gm’s and higher values of Ni’s would also help mag-
nify the magnetic forces based on Eq. (25). From another aspect,
the circled area shown in Fig. 12 confirms the reduced bearing tor-
ques of the optimal sets compared to those of the nominal ones;
this helps consume lower values of the currents leading to a lower
energy consumption. Smaller amounts of currents are used in the
optimal sets as shown in Fig. 11; this can be related to the
decreased resistance torques (the bearing ones) in addition to the
increased magnetic forces. Subsequently, we would be able to
apply a lower level of the lumped energy to carry out the closing
operation.

Consequently, reduced amounts of energies are consumed as
shown in Figs. 14(a)–14(c). Figures 14(a)–14(c) reveal upward of
13.09%, 12.57%, and 13.22% energy savings obtained through
the GS, genetic, and SA algorithms, respectively,

DEGS ¼
Enominal � Eoptimal

Enominal

� 100 � 13:09% (40)

DEGA ¼
Enominal � Eoptimal

Enominal

� 100 � 12:57% (41)

DESA ¼
Enominal � Eoptimal

Enominal

� 100 � 13:22% (42)

We repeatedly examined the optimization schemes to avoid being
trapped in local minima. The negligible difference (less than
0.65%) among the GS, genetic, and SA algorithms would poten-
tially confirm the global minimum value which looks meaningful
from the point of view of the physics of the system. The amount
of energy saved is promising in which we typically run thousands
of valve-actuator sets in a flow line and using such optimal config-
urations would help reduce the amount of energy consumption
and subsequently the cost of operation for the whole network.

5 Conclusions

This paper presented a novel coupled nonlinear model of two
actuators and valves subject to the sudden contraction. We dis-
cussed the effects of mutual interactions between the valves’ dy-
namics in correlations with the flow nonlinear torques including
both the hydrodynamic and bearing ones. These dependencies
among different components were formalized to yield a sixth-
order dynamic model of the whole system. We used SA, genetic,
and gradient based algorithms to carry out optimization and obtain
the global minimum of the cost function defined as the sum of
energy consumed in each valve-actuator set.

The principal results of this paper can be summarized as
follows:


 Energy can be saved by a significant amount (as much as
13%) by implementing optimal design.


 The optimal flow torques help consume a minimum level of
the lumped energy.

Fig. 12 The total torques acting on both the valves

Fig. 13 The optimal and nominal valves’ rotation angles
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 Lower values of the currents and subsequently instantaneous
energies (by plotting Eins ¼ viii versus ai) are consumed par-
ticularly for higher rotation angles.


 Higher values of the motive forces are obtained.

We are currently focusing our efforts on developing a compre-
hensive model for n valves and actuators to be operated optimally
in series.
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Nomenclature

Ad ¼ area of valve’s disk
bdi ¼ equivalent damping coefficient of ith valve
Ci ¼ constant coefficient of bearing torque acting on ith valve
Cii ¼ magnetic reluctances of ith actuator
cvi ¼ ith valve’s coefficient
Dsi ¼ stem diameter of ith valve
Dvi ¼ diameter of ith valve
Etot ¼ lumped amount of energy
Fmi ¼ magnetic force of ith actuator
gmi ¼ airgap of ith actuator

ii ¼ current of ith actuator
Ji ¼ polar moment of inertia of ith valve
ki ¼ equivalent stiffness

Kcon ¼ coefficient of pressure drop due to pipe contraction
Li ¼ pipe length before and after pipe contraction
Ni ¼ number of coils of ith actuator

Pconi ¼ pressure before and after pipe contraction
Pin ¼ inlet pressure

Pout ¼ outlet pressure

P1 ¼ pressure after upstream valve
P2 ¼ pressure before downstream valve
qv ¼ volumetric flow rate
qin ¼ inlet volumetric flow rate

qout ¼ outlet volumetric flow rate
Ri ¼ coil electrical resistance of ith actuator
ri ¼ radius of ith pinion

Rcon ¼ resistance due to pipe contraction
RLi ¼ resistance due to head loss before and after pipe

contraction
Rni ¼ changing resistance of ith valve

tf ¼ nominal operation time
Tbi ¼ bearing torque acting on ith valve
Thi ¼ hydrodynamic torque acting on ith valve

v ¼ flow mean velocity
Vi ¼ voltage of ith actuator

vout ¼ outlet flow velocity
xi ¼ linear displacement of ith plunger
_xi ¼ linear velocity of ith plunger
zi ¼ state variable
ai ¼ rotation angle of ith valve
_ai ¼ angular velocity of ith valve
b ¼ ratio of minor and major diameters
h ¼ angle of approach

h1 ¼ lumped design variables
l ¼ friction coefficient between bearing area and valve’s stem
lf ¼ fluid dynamic viscosity
q ¼ density of media

References
[1] Hughes, R., Balestrini, S., Kelly, K., Weston, N., and Mavris, D., 2006,

“Modeling of an Integrated Reconfigurable Intelligent System (IRIS) for Ship
Design,” 2006 ASNE Ship and Ship Systems Technology (S3T) Symposium.

[2] Lequesne, B., Henry, R., and Kamal, M., 1998, “Magnavalve: A New Solenoid
Configuration Based on a Spring-Mass Oscillatory System for Engine Valve
Actuation,” GM Research Report No. E3-89.

Fig. 14 The optimized lumped amount of energy: (a) GS (Eopm 5 22,603), and (b) GA
(Eopm 5 22,721), and (c) SA (Eopm 5 22,557)

041402-10 / Vol. 138, APRIL 2016 Transactions of the ASME

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 02/19/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.470.9547&rep=rep1&type=pdf


[3] Naseradinmousavi, P., and Nataraj, C., 2011, “Nonlinear Mathematical Model-
ing of Butterfly Valves Driven by Solenoid Actuators,” J. Appl. Math. Modell.,
35(5), pp. 2324–2335.

[4] Naseradinmousavi, P., and Nataraj, C., 2012, “Transient Chaos and Crisis Phe-
nomena in Butterfly Valves Driven by Solenoid Actuators,” Commun. Nonlin-
ear Sci. Numer. Simul., 17(11), pp. 4336–4345.

[5] Naseradinmousavi, P., and Nataraj, C., 2013, “Optimal Design of Solenoid
Actuators Driving Butterfly Valves,” ASME J. Mech. Des., 135(9), p. 094501.

[6] Naseradinmousavi, P., 2015, “A Novel Nonlinear Modeling and Dynamic Anal-
ysis of Solenoid Actuated Butterfly Valves Coupled in Series,” ASME J. Dyn.
Syst., Meas., Control, 137(1), p. 014505.

[7] Belato, D., Weber, H. I., Balthazar, J. M., and Mook, D. T., 2001, “Chaotic
Vibrations of a Nonideal Electro-Mechanical System,” Int. J. Solids Struct.,
38(10–13), pp. 1699–1706.

[8] Xie, W. C., Lee, H. P., and Lim, S. P., 2003, “Nonlinear Dynamic Analysis of MEMS
Switches by Nonlinear Modal Analysis,” J. Nonlinear Dyn., 31(3), pp. 243–256.

[9] Boivin, N., Pierre, C., and Shaw, S. W., 1995, “Non-Linear Normal Modes,
Invariance, and Modal Dynamics Approximations of Non-Linear Systems,” J.
Nonlinear Dyn., 8(3), pp. 315–346.

[10] Ge, Z. M., and Lin, T. N., 2003, “Chaos, Chaos Control and Synchronization of
Electro-Mechanical Gyrostat System,” J. Sound Vib., 259(3), pp. 585–603.

[11] Baek-Ju, S., and Eun-Woong, L., 2005, “Optimal Design and Speed Increasing
Method of Solenoid Actuator Using a Non-Magnetic Ring,” International Con-
ference on Power Electronics and Drives Systems (PEDS), pp. 1140–1145.

[12] Hameyer, K., and Nienhaus, M., 2002, “Electromagnetic Actuator-Current Develop-
ments and Examples,” 8th International Conference on New Actuators, pp. 170–175.

[13] Sung, B. J., Lee, E. W., and Kim, H. E., 2002, “Development of Design Pro-
gram for On and Off Type Solenoid Actuator,” KIEE Summer Annual Confer-
ence, Vol. B, pp. 929–931.

[14] Kajima, T., 1995, “Dynamic Model of the Plunger Type Solenoids at Deener-
gizing State,” IEEE Trans. Magn., 31(3), pp. 2315–2323.

[15] Scott, D. A., Karr, C. L., and Schinstock, D. E., 1999, “Genetic Algorithm
Frequency-Domain Optimization of an Anti-Resonant Electromechanical Con-
troller,” Eng. Appl. Artificial Intell., 12(2), pp. 201–211.

[16] Mahdi, S. A., 2014, “Optimization of PID Controller Parameters Based on
Genetic Algorithm for Non-Linear Electromechanical Actuator,” Int. J. Com-
put. Appl., 94(3), pp. 11–20.

[17] Jimenez-Octavio, J. R., Pil, E., Lopez-Garcia, O., and Carnicero, A., 2006,
“Coupled Electromechanical Cost Optimization of High Speed Railway Over-
heads,” ASME Paper No. JRC2006-94023.

[18] Nowak, L., 2010, “Optimization of the Electromechanical Systems on the Basis
of Coupled Field-Circuit Approach,” Int. J. Comput. Math. Electr. Electron.
Eng., 20(1), pp. 39–52.

[19] Marquardt, D., 1963, “An Algorithm for Least-Squares Estimation of Nonlinear
Parameters,” SIAM J. Appl. Math., 11(2), pp. 431–441.

[20] Messine, F., Nogarede, B., and Lagouanelle, J. L., 1998, “Optimal Design of
Electromechanical Actuators: A New Method Based on Global Optimization,”
IEEE Trans. Magn., 34(1), pp. 299–308.

[21] Kelley, C. T., 1999, “Iterative Methods for Optimization,” Frontiers in Applied
Mathematics, Vol. 18, SIAM, Philadelphia, PA.

[22] Sefkat, G., 2009, “The Design Optimization of the Electromechanical
Actuator,” Struct. Multidiscip. Optim., 37(6), pp. 635–644.

[23] Abergel, J., Allain, M., Michaud, H., Cueff, M., Ricart, T., Dieppedale, C.,
Rhun, G. L., Faralli, D., Fanget, S., and Defay, E., 2012, “Optimized Gradient-
Free PZT Thin Films for Micro-Actuators,” 2012 IEEE International Ultrason-
ics Symposium (IUS), Dresden, Germany, Oct. 7–10, pp. 972–974.

[24] Chakraborty, I., Trawick, D. R., Jackson, D., and Mavris, D., 2013, “Electric
Control Surface Actuator Design Optimization and Allocation for the More
Electric Aircraft,” AIAA Paper No. 2013-4283.

[25] Medhat, A., and Youssef, M., 2013, “Optimized PID Tracking Controller for
Piezoelectric Hysteretic Actuator Model,” World J. Modell. Simul., 9(3), pp.
223–234.

[26] Naseradinmousavi, P., 2012, “Nonlinear Modeling, Dynamic Analysis, and
Optimal Design and Operation of Electromechanical Valve Systems,” Ph.D.
thesis, Villanova University, Villanova, PA.

[27] Bennett, C. O., and Myers, J. E., 1962, Momentum, Heat, and Mass Transfer,
McGraw-Hill, New York.

[28] Massey, B. S., and Ward-Smith, J., 1998, Mechanics of Fluids, 7th ed., Taylor
& Francis, London/New York.

[29] American Water Works Association, 2012, Butterfly Valves: Torque, Head
Loss, and Cavitation Analysis, 2nd ed., AWWA, Denver, CO.

[30] Park, J. Y., and Chung, M. K., 2006, “Study on Hydrodynamic Torque of a But-
terfly Valve,” ASME J. Fluids Eng., 128(1), pp. 190–195.

[31] Leutwyler, Z., and Dalton, C., 2008, “A CFD Study of the Flow Field, Resultant
Force, and Aerodynamic Torque on a Symmetric Disk Butterfly Valve in a
Compressible Fluid,” ASME J. Pressure Vessel Technol., 130(2), p. 021302.

[32] Naseradinmousavi, P., and Nataraj, C., 2011, “A Chaotic Blue Sky Catastrophe
of Butterfly Valves Driven by Solenoid Actuators,” ASME Paper No.
IMECE2011/62608.

[33] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., 1983, “Optimization by Simu-
lated Annealing,” Science, 220(4598), pp. 671–680.

[34] Cerny, V., 1985, “Thermodynamical Approach to the Traveling Salesman
Problem: An Efficient Simulation Algorithm,” J. Optim. Theory Appl., 45(1),
January, 45(1), pp. 41–55.

[35] Holland, H. J., 1975, Adaptation in Natural and Artificial Systems, University
of Michigan Press, Ann Arbor, MI.

Journal of Mechanical Design APRIL 2016, Vol. 138 / 041402-11

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 02/19/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1016/j.apm.2010.11.036
http://dx.doi.org/10.1016/j.cnsns.2012.01.034
http://dx.doi.org/10.1016/j.cnsns.2012.01.034
http://dx.doi.org/10.1115/1.4024720
http://dx.doi.org/10.1115/1.4027990
http://dx.doi.org/10.1115/1.4027990
http://dx.doi.org/10.1016/S0020-7683(00)00130-X
http://dx.doi.org/10.1023/A:1022914020076
http://dx.doi.org/10.1007/BF00045620
http://dx.doi.org/10.1007/BF00045620
http://dx.doi.org/10.1006/jsvi.2002.5110
http://dx.doi.org/10.1109/PEDS.2005.1619859
http://dx.doi.org/10.1109/20.376228
http://dx.doi.org/10.1016/S0952-1976(98)00054-2
http://dx.doi.org/10.5120/16322-5573
http://dx.doi.org/10.5120/16322-5573
http://dx.doi.org/10.1115/JRC2006-94023
http://dx.doi.org/10.1108/03321641011007957
http://dx.doi.org/10.1108/03321641011007957
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1109/20.650361
http://dx.doi.org/10.1137/1.9781611970920
http://dx.doi.org/10.1137/1.9781611970920
http://dx.doi.org/10.1007/s00158-008-0254-3
http://dx.doi.org/10.1109/ULTSYM.2012.0243
http://dx.doi.org/10.2514/6.2013-4283
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.565.6541&rep=rep1&type=pdf
http://adsabs.harvard.edu/abs/2012PhDT........42N
http://adsabs.harvard.edu/abs/2012PhDT........42N
http://dx.doi.org/10.1115/1.2137348
http://dx.doi.org/10.1115/1.2891929
http://dx.doi.org/10.1115/IMECE2011-62608
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1007/BF00940812

	s1
	l
	s2
	FD1
	1
	FD2
	FD3
	FD4
	FD5
	FD6
	FD7
	FD8
	FD9
	FD10
	FD11
	FD12
	1
	2
	3
	FD13
	FD14
	FD15
	FD16
	FD17
	FD18
	FD19
	FD20
	FD21
	FD22
	FD23
	FD24
	s2
	FD25
	FD26
	4
	FD27
	FD28
	FD29
	FD30
	FD31
	FD32
	s3
	FD33
	FD34
	FD35
	FD36
	s3
	5
	6
	FD37
	7
	8
	s4
	9
	10
	11
	2
	FD38
	FD39
	FD40
	FD41
	FD42
	s5
	12
	13
	1
	2
	14
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35

