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A Decentralized Neuro-Adaptive
Control Scheme to Suppress
Chaotic/Hyperchaotic Dynamics
of Smart Valves Network
In this effort, we utilize a decentralized neuro-adaptive scheme in extinguishing both the
chaotic and hyperchaotic dynamics of the so-called “Smart Valves” network. In particu-
lar, a network of two dynamically interconnected bidirectional solenoid actuated butter-
fly valves undergoes the harmful chaotic/hyperchaotic dynamics subject to some initial
conditions and critical parameters. Crucial trade-offs, including robustness, computa-
tional burden, and practical feasibility of the control scheme, are thoroughly investi-
gated. The advantages and shortcomings of the decentralized neuro-adaptive method are
compared with those of the direct decentralized adaptive one to yield a computationally
efficient, practically feasible, and robust scheme in the presence of the coupled harmful
responses. [DOI: 10.1115/1.4039627]

1 Introduction

The centralized and decentralized control of large-scale
networks has received considerable attention. Although the decen-
tralized schemes have been widely employed due to their compu-
tationally efficient algorithms, but some crucial trade-offs must be
carefully addressed. The critical robustness and practical feasibil-
ity aspects of the decentralized controllers, in the presence of
interconnected harmful responses, need to be thoroughly investi-
gated. Note that the decentralized control of a multiphysics elec-
tro-magneto-mechanical-fluid network would be challenging to be
dealt with. Many uncertainties involved with various coupled
multidisciplinary components potentially result in cumbersome
computational burden in addition to the lack of robustness. There-
fore, a robust, computationally efficient, and practically feasible
decentralized controller is needed to be examined and then imple-
mented in such a large-scale multi-agent network.

The so-called “smart valves” network is widely utilized in
many critical infrastructures including, but not limited to, munici-
pal piping systems, oil and gas fields, petrochemical plants, and
defense industries. Such a multiphysics flow distribution network
deals with various aspects of fluid mechanics, electromagnetics,
and electromechanical components. The economic and even
social impact of failure of such an essential network, for each
application addressed previously, would be expected to be dra-
matic, and therefore, a robust and practically feasible control
scheme is required to mitigate the effects of the harmful dynamic
responses; in the presence of enormous uncertainties involved
with such a large-scale network. In particular, the system we study
here is a network of two dynamically interconnected bidirectional
solenoid actuated butterfly valves operating in series, as shown in
Fig. 1.

Note that we have previously carried out [1–16] broad analyti-
cal and experimental studies from nonlinear interconnected mod-
eling to centralized and direct decentralized adaptive control of

both an isolated actuator-valve agent and a network of two sole-
noid actuated butterfly valves dynamically coupled in series.

It is somewhat difficult to find specific research work related to
capturing and then controlling the chaotic and hyperchaotic
dynamics of smart flow distribution network using the decentral-
ized neuro-adaptive scheme. However, some efforts can be found
in Refs. [17–30] addressing the control of broad electromechani-
cal systems. Hsiao et al. [31] studied stabilization problem for a
neural-network (NN) linearly interconnected system consisting
a number of NN models. They established a linear difference
inclusion state-space representation for the dynamics of each NN
model. Subsequently, according to the decentralized control
scheme, a set of Takagi–Sugeno (T–S) fuzzy controllers was
synthesized to stabilize the NN linearly interconnected system.
Karpenko et al. [32] employed reinforcement learning to coordi-
nate the motions of a pair of hydraulic actuators. Yang and Yue
[33] developed an adaptive observer to reconstruct unavailable
state information taking advantage of the universal approximation
property of NNs. They then recursively designed an observer-
based decentralized adaptive fault-tolerant control strategy by
combining backstepping methods with NNs, fault-tolerant control
theory, and the dynamic surface control technique. Eltantawie
[34] created decentralized neuro-fuzzy controller to improve the
ride comfort and increase the stability for half car suspension sys-
tem using the magneto-rheological damper as a semi-active
device. Shi and Singh [35] studied robust decentralized adaptive
controller design for interconnected systems. They considered a
general representation of interconnections when the strength of
the interconnections is bounded by a pth-order polynomial in
states. Duan and Min [36] solved the decentralized state-feedback
control problem for a class of large-scale stochastic high-order
nonlinear systems. By generalizing NN approximation approach
to this kind of systems, they completely removed the growth con-
ditions on system nonlinearities and the power order restriction.
Tong et al. [37] proposed an adaptive fuzzy decentralized back-
stepping output feedback control to be utilized for a class of
uncertain large-scale stochastic nonlinear systems without the
measurements of the states. The fuzzy logic systems are used in
approximating the unknown nonlinear functions, and a fuzzy state
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observer is designed for estimating the unmeasured states. They
revealed that the proposed control approach can guarantee that all
the signals of the resulting closed-loop system are semi-globally
uniformly ultimately bounded in probability, and the observer
errors and the output of the system converge to a small neighbor-
hood of the origin by choosing appropriate design parameters.
Zhang et al. [38] investigated decentralized adaptive control for a
class of discrete-time nonlinear hidden leader–follower multi-
agent systems. They provided rigorous mathematical proofs to
reveal that the hidden leader agent tracks the desired reference
signal, all the follower agents follow the hidden leader agent, and
the closed-loop system eventually achieves strong synchronization
in the presence of strong couplings. Skworcow et al. [39] consid-
ered development of a methodology for an online energy and
leakage management in water distribution systems, formulated
within a model predictive control (MPC) framework. The
approach involved calculation of control actions, i.e., time sched-
ules for pumps, valves, and sources, to minimize the costs associ-
ated with energy used for water pumping and treatment and water
losses due to leakage, while satisfying all operational constraints.
Negenborn et al. [40] considered the control of large-scale trans-
portation networks, like road traffic networks, power distribution
networks, water distribution networks, etc. Control of these net-
works is often not possible from a single point by a single intelli-
gent control agent; instead, control has to be performed using
multiple intelligent agents. They considered multi-agent control
schemes in which each agent employs a model-based predictive
control approach. Coordination between the agents was used to
improve decision making. Bottura and Caceres [41] analyzed river
water quality systems with a serial interconnection structure with
the objective of multivariable control. For the resulting block tri-
angular system, a control design methodology was proposed in
such a way to permit that from multivariable input–output data for
such a type of system, both the identification by a subspace meth-
odology previously developed be made as the corresponding
decentralized control. Joseph-Duran et al. [42] presented an
output-feedback control strategy for pollution mitigation in com-
bined sewer networks. Their strategy provided means to apply
model-based predictive control to large-scale sewer networks, in
spite of the lack of measurements at most of the network sewers.
To cope with uncertainty in system disturbances due to the sto-
chastic water demand/consumption and optimize operational
costs, Grosso et al. [43] proposed three stochastic model predic-
tive control approaches, namely, chance-constrained MPC, tree-
based MPC, and multiple-scenario MPC. Fambrini and Ocampo-
Martinez [44] designed and tested MPC strategies for the global
centralized and decentralized control of drinking water networks

(DWN). Tests have been performed in order to highlight the
advantages of having a partition of a complex network in several
subsystems. Barcelli et al. [45] proposed an automatic model
decomposition approach for decentralized model predictive con-
trol of DWNs. For a given DWN, the proposed algorithm parti-
tioned the network in a set of subnetworks by taking advantage of
the topology of the network, of the information about the use of
actuators, and of system management heuristics.

We briefly represent the nonlinear interconnected modeling of
two agents (for completeness) in addition to the initial conditions
and crucial parameters resulted in the harmful dynamic responses.
Then, the decentralized neuro-adaptive control scheme is formu-
lated to be used in suppressing the interconnected chaotic and
hyperchaotic dynamics of two agents. The results are thoroughly
compared with those of the direct decentralized adaptive one to
reveal crucial trade-offs and then yield a robust, computationally
efficient, and practically feasible control scheme.

2 Mathematical Modeling

We have previously formulated [1–5] the interconnected
analytical model of two agents operating in series and briefly rep-
resent here for completeness. The small-scale network being stud-
ied here is a set of two symmetric butterfly valves driven by
bidirectional solenoid actuators (Fig. 1) through rack and pinion
arrangements. Note that utilizing the rack and pinion mechanism
provides the kinematic constraint helping us to formulate the
coupled multiphysics model of two agents.

Developing such an interconnected multiphysics model
undoubtedly needs some simplifying assumptions to be applied.
Among those assumptions reported earlier [1–5], the most impor-
tant one is to assume the dominant laminar flow for both the
coupled valves in order to avoid the numerical difficulties
involved with a turbulent regime. However, a critical issue needs
to be addressed with respect to the validity of such an assumption.
The values of pipe diameters and flow mean velocity given in
Table 1 expectedly indicate the existence of the turbulent regime
invalidating the assumption we have made. From another
aspect, the analytical formulas of the flow loads, including the
hydrodynamic and bearing torques, were formulated based on the
assumption of laminar flow [46]. To address the issues discussed
previously, we have carried out experimental work [47], shown in
Fig. 2, to measure the sum of the hydrodynamic and bearing tor-
ques as the most affecting loads on the valves and subsequently,
the dynamics of the actuators. The experiment yielded the total
torque for the inlet velocity of v � 2:7ðm=sÞ and valve diameter
of Dv ¼ 2 in reasonably validating the laminar flow assumption.

Fig. 1 (a) A schematic configuration of two bidirectional solenoid actuated butterfly valves subject to the sudden contraction
and (b) a coupled model of two butterfly valves in series without actuation
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We proposed an effective method of “coupled resistances”
[1–5] to model the interconnected agents by utilizing the mass
continuity and postdiffusion electromagnetic principles. Note that
the inlet and outlet pressures were supposed to be known. As can
be observed in Fig. 1(b), the valves are modeled as changing
resistors

Rni aið Þ ¼
ei

pia3
i þ qia2

i þ oiai þ ci

� �2
; i ¼ 1; 2ð Þ (1)

where, Rn1 and Rn2 indicate the resistances of the upstream and
downstream valves, respectively, and e1¼ 7.2� 105, p1¼ 461.9,
q1¼�405.4, o1¼�1831, c1¼ 2207, e2¼ 4.51� 105, p2¼ 161.84,
q2¼�110.53, o2¼�695.1, and c2¼ 807.57 for two different
valves’ diameters. Also, the flow between the valves in addition to
the sudden contraction is modeled as constant resistors based on
the Hagen–Poiseuille and Borda–Carnot formulas [48,49]

RLi ¼
128lf Li

pD4
vi

; i ¼ 1; 2ð Þ (2)

Rcon ¼
8Kcon

p2D4
v2

(3)

where Kcon ¼ 0:5ð1� b2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðh=2Þ

p
, b indicates the ratio of

minor and major diameters ðDv2=Dv1Þ, h is the angle of approach
(the pipe contraction angle), lf stands for the fluid dynamic vis-
cosity, Dv1 and Dv2 are the upstream and downstream valves’
diameters, respectively, L1 and L2 indicate the pipe lengths before
and after contraction, and RL1 and RL2 are the constant resistances.
Therefore, two valves operating in series can be modeled as a set
of five resistors, leading us to derive mathematical expressions of
the pressures after and before the upstream and downstream
valves, respectively, as follows [1–5]:

P1 ¼
Rn2Pin þ Rn1Pout þ Rn1 RL1 þ RL2 þ Rconqvð Þqv

Rn1 þ Rn2ð Þ (4)

P2 ¼
Rn2Pin þ Rn1Pout � Rn2 RL1 þ RL2 þ Rconqvð Þqv

Rn1 þ Rn2ð Þ (5)

where qv is the volumetric flow rate. These interconnected pres-
sures were used in developing both the coupled hydrodynamic
and bearing torques [1–5]

Th1 ¼ a1a1eb1a1:1
1 � c1ed1a1

� �
Pin � P1ð Þ

¼ a1a1eb1a1:1
1 � c1ed1a1

� �
�

e1

p1a3
1 þ q1a2

1 þ o1a1 þ c1

� �2

X2

i¼1

ei

pia3
i þ qia2

i þ oiai þ ci

� �2

� Pin � Pout � RL1 þ RL2 þ Rconqvð Þqvð Þ (6)

Th2 ¼ a01a2eb0
1
a1:1

2 � c01ed0
1
a2

� �
P2 � Poutð Þ

¼ a01a2eb0
1
a1:1

2 � c01ed0
1
a2

� �
�

e2

p2a3
2 þ q2a2

2 þ o2a2 þ c2

� �2

X2

i¼1

ei

pia3
i þ qia2

i þ oiai þ ci

� �2

� Pin � Pout � RL1 þ RL2 þ Rconqvð Þqvð Þ (7)

Tb1 ¼ C1DP1ðRn1;Rn2;RL1;RL2;RconÞ (8)

Tb2 ¼ C2DP2ðRn1;Rn2;RL1;RL2;RconÞ (9)

where a1¼0:4249; a01¼0:1022; b1¼�18:52; b01¼�17:0795;
c1¼�7:823�10�4; c01¼�2�10�4; d1¼�1:084; d01¼�1:0973;
C1¼C2¼0:5AdlDs; DP1¼Pin�P1; DP2¼P2�Pout, and Pin

and Pout are the inlet and outlet pressures given, respectively.
Note that Ds is the stem diameter of the valve and l stands for the
friction coefficient of the bearing area. We have previously estab-
lished that the hydrodynamic torque acts as a helping load pushing
the valve to be closed and is typically effective for when the valve
angle is lower than 60 deg [1–16]; the effective range was experi-
mentally examined [47] confirming the helping behavior of the
hydrodynamic torque by presenting positive values. The bearing
torque, due to its friction-based nature, always acts as a resisting
load. Using these tools, we could formulate the sixth-order inter-
connected model of two agents as follows:

_z1 ¼ z2 (10)

Table 1 The system parameters

q 1000 ðkg=m3Þ v 3 ðm=sÞ
J1,2 0.104� 10�1 (kg m2) N2 3300
N1 3300 C11,22 1.56� 106 (H�1)
Dv1 0.2032 (m) Dv2 0.127 (m)
Ds1,s2 0.01 (m) Pout 2 (kPa)
k1,2 60 (N�m�1) C21,22 6.32� 108 (H�1)
L1 2 (m) L2 1 (m)
r1,2 0.05 (m) h 90 deg
Pin 256 (kPa) gm1,m2 0.1 (m)
lf 0.018 (kg m�1 s�1) bdi¼li 1� 10�7

e1,2 5� 10– 3

Fig. 2 (a) The experimental work setup and (b) the experimentally measured total flow loads
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_z2 ¼
1

J1

r1C21N2
1z2

3

2 C11þC21 gm1� r1z1ð Þ
� �2

�bd1z2� k1z1þ

Pin�Pout� RL1þRL2þRconqvð Þqvð Þe1

p1z3
1þq1z2

1þo1z1þ c1

� �2X
i¼1;4

ei

piz
3
i þqiz2

i þoiziþ ci

� �2

� a1z1eb1z1:1
1 � c1ed1z1

� �
�C1� tanh Kz2ð Þ

h i
2
66664

3
77775

(11)

_z3 ¼
V1 � R1z3ð Þ C11 þ C21 gm1 � r1z1ð Þ

� �
N2

1

� r1C21z3z2

C11 þ C21 gm1 � r1z1ð Þ
� � (12)

_z4 ¼ z5 (13)

_z5¼
1

J2

r2C22N2
2z2

6

2 C12þC22 gm2� r2z4ð Þ
� �2

�bd2z5�k2z4þ

Pin�Pout� RL1þRL2þRconqvð Þqvð Þe2

p2z3
4þq2z2

4þo2z4þc2

� �2X
i¼1;4

ei

piz
3
i þqiz2

i þoiziþ ci

� �2

� a01z4eb0
1
z1:1

4 � c01ed0
1
z4

� �
�C2� tanh Kz5ð Þ

h i
2
66664

3
77775

(14)

_z6 ¼
V2 � R2z6ð Þ C12 þ C22 gm2 � r2z4ð Þ

� �
N2

2

� r2C22z5z6

C12 þ C22 gm2 � r2z4ð Þ
� � (15)

where, bdi indicates the equivalent torsional damping, ki is the equivalent torsional stiffness, Vi stands for the supply voltage, ri indicates
the radius of the pinion, C1i and C2i are the reluctances of the magnetic path without air gap and that of the air gap, respectively, Ni

stands for the number of coils, gmi is the nominal air gap, Ji indicates the polar moment of inertia of the valve’s disk, and Ri is the elec-
trical resistance of coil. z1 ¼ a1; z2 ¼ _a1, and z3¼ i1 indicate the upstream valve’s rotation angle, angular velocity, and actuator current,
respectively. z4 ¼ a2; z5 ¼ _a2, and z6¼ i2 stand for the downstream valve’s rotation angle, angular velocity, and actuator current,
respectively. The network parameters are listed in Table 1. Note that it is important to thoroughly study the existence and uniqueness of
solution of the model formulated. Equations (10)–(15) can be lumped as

_Z ¼ FðZÞ (16)

where Z ¼ ½z1; z2; z3; z4; z5; z6�T.
THEOREM 1. Assume F(Z) is a continuous function [50] in a region given as

R ¼ fZ 2 <n : jjZ � Z0jj � ag; a > 0 (17)

Since F is continuous in a closed and bounded domain, it is necessarily bounded in R:

9K > 0 such that jjFðZÞjj � K 8 Z 2 R (18)

Based on the theorem, it is straightforward to conclude that _Z ¼ FðZÞ has at least one solution.
THEOREM 2. Assume F and @F=@Z are continuous functions in R [50] defined through the existence theorem. Therefore, both the F

and @F=@Z are bounded in R whereas F is Lipschitz:

9K; L > 0 such that jjFðZÞjj � K and

jjFðZÞ � FðYÞjj � LjjZ � Yjj 8 Z;Y 2 R
(19)

This indicates that _Z ¼ FðZÞ has at most one solution.
Comparing the conclusion of at most one solution with the existence theorem leads to a unique solution of _Z ¼ FðZÞ. It is obvious

that all F/’s and ð@F/=@zwÞð/;w ¼ 1;…; 6) are continuous on a certain operational domain (open and connected set, D � <6) of the
system; there is no singular point in the operational domain. Consequently, F/’s and @F/=@zw are bounded in D resulting in a Lipschitz
F at every point z 2 D.

By exposing the coupled agents to the critical parameters of bdi¼ li¼ 1� 10– 7 along with a set of certain initial conditions, we could
capture [2], for the first time, the interconnected chaotic and hyperchaotic dynamics shown in Figs. 3(a) and 3(b), respectively. The initial
conditions leading to the coupled chaos and hyperchaos are initial1¼ [20(deg) 0 0 20(deg) 0 0] and initial2¼ [2(deg) 0 0 2(deg) 0 0],
respectively. We utilized the powerful tools of Lyapunov exponents and Poincar�e map to distinguish between the responses. The Lyapunov
exponent is a powerful indicator to reveal the divergence rate of two nearby trajectories (valves-actuators)

Lj ¼ lim
t!1jDzj0j ! 0

1

t
ln
jDzj zj0; tð Þj
jDzj0j

(20)
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The algorithm utilized in determining Lyapunov exponents can be
found in Ref. [51]. One and two positive Lyapunov exponents
shown in Figs. 4(a) and 4(b) indicate the chaotic and hyperchaotic
dynamics of the two agents. The irregular Poincar�e maps
(Figs. 4(c)–4(f)) confirm the existence of the harmful responses.

Extinguishing such harmful dynamic responses, in particular
with larger domains of attractions, would undoubtedly require a
robust, computationally efficient, and more importantly, practi-
cally feasible control scheme. We have previously examined a
centralized adaptive method [1] by yielding practically feasible
control inputs although with a considerable computation time.
The issue of computational burden, particularly for the large-scale
networks, led us to examine the direct decentralized adaptive
method [11]. The decentralized scheme’s computation time was
one-sixtieth of the centralized one although yielded practically
infeasible control inputs. Therefore, we here examine a decentral-
ized combinatorial method to possibly fix the shortcomings of the
direct decentralized adaptive one.

3 Decentralized Neuro-Adaptive Scheme

The decentralized neuro-adaptive scheme reported in Refs.
[52–55] is utilized for tracking energy-efficient trajectories [3,4]
defined based on the crucial initial conditions

adi ¼
p
3

tanh 10�4t3ð Þ þ p
9
; Initial1 (21)

adi ¼
p
3

tanh 10�4t3ð Þ þ p
90
; Initial2 (22)

Note that the so-called “S-Shaped” trajectories are highly
energy-efficient [4] and yield smooth dynamic responses avoiding
the repeatedly observed dangerous phenomenon of “Water
Hammering.” We rewrite the interconnected dynamic Eqs. (11)
and (14) as

Ji€ai þ bdi _ai þ kiai ¼
riC2iN

2
i ui

2 C1i þ C2i gmi � riaið Þ
� �2

þ A1RniX2

i¼1

Rni

� T0hi � T0bitanh K _aið Þ
� �

; i ¼ 1; 2ð Þ (23)

where A1¼ðPin�Pout�ðRL1þRL2þRconqvÞqvÞ; T0h1¼a1a1eb1a1:1
1

�c1ed1a1 ; T0h2¼a01a2eb0
1
a1:1

2 �c01ed0
1
a2 , and T0bi¼0:5AdiliDsi.

Generally, a large-scale network containing N interconnected
agents, here N¼ 2, can be expressed as follows:

_xi;1 ¼ xi;2 (24)

_xi;ni
¼ fiðxi; uiÞ þ Diðx1; x2;…; xNÞ (25)

yi ¼ xi;1 (26)

where xi ¼ ½xi;1; xi;2;…; xi;ni
�T is the state vector of ith agent and

x ¼ ½xT
1 ; x

T
2 ;…; xT

N �
T

indicates the full state of the whole network.
ui and yi stand for the decentralized input and output of the ith
agent, respectively; fiðxi; uiÞ is a smooth function and
jDiðx1; x1;…; xNÞj � ei ðei > 0Þ stands for the effects of the other
interconnected sets.

By defining the tracking error ei ¼ yi|{z}
ai

� rdi|{z}
adi

, the error vector

of the ith agent is written as ei ¼ ½ei; _ei;…; e
ðni�1Þ
i �T with the time

derivative of _ei ¼ ½ _ei; e
ð2Þ
i ;…; e

ðniÞ
i �

T; ði ¼ 1; 2Þ.
The error dynamics can be therefore written as

e
ðniÞ
i ¼ y

ðniÞ
i � r

ðniÞ
di (27)

¼ _xi;ni
� r

ðniÞ
di (28)

¼ fiðxi; uiÞ þ Diðx1; x2;…; xNÞ � r
ðniÞ
di (29)

Using the mean value theorem [56], we have

fiðxi; uiÞ ¼ fiðxi; u
	
i Þ þ ðui � u	i Þfui

(30)

where fui
¼ ð@fiðxi; uiÞ=@uiÞjui¼uki

; k 2 ð0; 1Þ, and uki
¼ kiuiþ

ð1� kiÞu	i . Substituting Eq. (30) into Eq. (29) yields

e
ðniÞ
i ¼ fiðxi; u

	
i Þ þ ðui � u	i Þfui

þ Di � r
ðniÞ
di (31)

Assuming vi ¼ fiðxi; u
	
i Þ, which is a pseudocontrol signal, and

rewriting Eq. (31) give

e
ðniÞ
i ¼ vi þ ðui � u	i Þfui

þ Di � r
ðniÞ
di (32)

Hence, the pseudocontrol vi [52] is derived as

vi ¼ �ðai;ni�1e
ðni�1Þ
i þ � � � þ ai;1 _ei þ ai;0eiÞ þ r

ðniÞ
di (33)

The coefficients of error terms are selected such that LiðsÞ ¼
sðniÞ þ ai;ni�1sðni�1Þ þ � � � þ ai;0 becomes Hurwitz. Substituting
Eq. (33) into Eq. (32) yields

e
ðniÞ
i ¼ �ðai;ni�1e

ðni�1Þ
i þ � � � þ ai;1 _ei þ ai;0eiÞ þ ðui � u	i Þfui

þ Di

(34)

Fig. 3 (a) The coupled sets’ phase portraits for initial1 and (b) the coupled sets’ phase portraits
for initial2
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Therefore, the error dynamics can be expressed as follows:

_ei ¼ Aiei þ biððui � u	i Þfui
þ DiÞ; ði ¼ 1; 2Þ (35)

The matrix Ai is Hurwitz and bi ¼ ½0 1�T for the two intercon-
nected agents subject to the chaotic and hyperchaotic dynamics.
The Hurwitz Ai leads to a unique positive definite Pi to be calcu-
lated through the Lyapunov equation

AT
i Pi þ PiAi ¼ �Qi (36)

where Qi is a positive definite matrix.

The following decentralized neuro-adaptive control inputs
developed in Ref. [52] are utilized in extinguishing the harmful
responses:

udni ¼ B̂
T

i wbi
zið Þ � eT

i Pibi

� �
Ĉ

T

i wci
eT

i Pibi

� �
� f̂isgn eT

i Pibi

� �
� eT

i Pibi

� �
X̂i þ ui;k zið Þ �

N eT
i Pibi

� �
2 f L

i

� �2
; i ¼ 1; 2ð Þ (37)

where B̂
T

i wbi
ðziÞ indicates the radial basis neural network

employed to approximate the ideal controller for the network,

Fig. 4 (a) The Lyapunov exponents for initial1, (b) the positive Lyapunov exponents for initial2 versus dif-
ferent approach angles (h), (c) the Poincar�e map for initial1 of the upstream set, (d) the Poincar�e map for
initial1 of the downstream set, (e) the Poincar�e map for initial2 of the upstream set, and (f) the Poincar�e
map for initial2 of the downstream set
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zi ¼ ½xT
i ; vi�T; wbi

ðziÞ 2 <Ki stands for the NN basis vector, Ki is

the NN’s number of nodes, the second term ðeT
i PibiÞĈ

T

i wci

ðeT
i PibiÞ is utilized in compensating for the interconnections’ non-

linearities, the ui;kðziÞ stands for a prior continuous controller
designed in advanced via heuristics or past experiences with the

application of conventional control methods, and f̂isgnðeT
i PibiÞ,

ðeT
i PibiÞX̂i, and ðNðeT

i PibiÞ=2ðf L
i Þ

2Þ are used in dealing with
uncertainties in the neural network approximation error and the
network interconnections.

Also, the following neuro-based adaptation laws are employed:

_̂Bi ¼ �Cbi
eT

i Pibiwbi
ðziÞ (38)

_̂
Ci ¼ Cci

ðeT
i PibiÞ2wci

ðeT
i PibiÞ (39)

_̂fi ¼ cfi
jeT

i Pibij (40)

_̂Xi ¼ cXi
ðeT

i PibiÞ2 (41)

where Cbi
; Cci

; cfi
, and cXi

are constant adaptation gains. Note

that the decentralized neuro-adaptive control and adaptation laws
developed in Ref. [57] guarantee asymptotic convergence of the
tracking errors to zero and also boundedness of the closed-loop
network using Barbalat and the following lemmas and
assumption.

ASSUMPTION. For each agent, the followings are valid for posi-
tive constants f L

i and Hi:

0 < f L
i �

@fi xi; uið Þ
@ui

(42)

				 d

dt

@fi xi; uið Þ
@ui


 �				 � Hi <
kmin Qið Þ
kmax Pið Þ

f L
i (43)

where Qi and Pi are the positive-definite matrices.
LEMMA. For the ith agent described in Eqs. (24)–(26) satisfying

the above-mentioned assumption and also other conditions given
in Ref. [58], the following inequality is valid:

eT
i Qiei

2fui

þ
eT

i Piei
_f ui

2f 2
ui


 0 (44)

Therefore, by selecting the Lyapunov function as

V ¼
XN

i¼1

eT
i Piei

2fui

þ 1

2
~B

T

i C�1
bi

~Bi þ ~C
T

i C�1
ci

~Ci þ
~f

2

i

cfi

þ
~X

2

i

cXi

" #
(45)

One can obtain _V as follows:

_V � �
XN

i¼1

eT
i Qiei

2fui

þ
eT

i Piei
_f ui

2f 2
ui

" #
(46)

The _V indicates asymptotic converge of the tracking errors to
zero, based on the lemma mentioned, in addition to the bounded-
ness of the closed-loop network. Note that we have previously uti-
lized the direct decentralized adaptive scheme [11] using the
following control and adaptation laws:

uddi ¼
�i

ĝi

(47)

�i ¼ ai;0ei þ ai;1 _ei þ ai;2e 2ð Þ
i þ � � � þ ai;ni�1e

ni�1ð Þ
i

� �
�
Xl

w¼1

f̂i;wfi;wðxiÞ þ r
ðniÞ
di þ eisgnðeT

i Pib
T
i Þ (48)

_̂fi;w ¼ �cfifi;weT
i Pib

T
i (49)

_̂gi ¼ �cgi

eT
i Pib

T
i �i

ĝ i

; i ¼ 1; 2ð Þ (50)

For the neuro-adaptive scheme, the basis functions are chosen as

wbi;q
¼ exp �

kzi � fbi;q
k2

r2
bi;q

 !
(51)

wci;q
¼ exp �

jeT
i Pibi � fci;q

j2

r2
ci;q

 !
(52)

where zi ¼ ½z3mþ1; z3mþ2; vi�T as m¼ i� 1 based on Eqs.
(10)–(15), and fbi;q

and fci;q
indicate the centers of the influences

of the basis functions defined as fbi;q
¼ ½fbi;q1

; fbi;q2
; fbi;q3

�T and

fci;q
¼ ½fci;q1

; fci;q2
; fci;q3

�T, respectively; here i¼ 1, 2 and we select

the radial basis neural network nodes as q ¼ 1;…; 200. The rbi;q

and rci;q
stand for the sizes of the influences of the basis

functions which we select as rbi;q
¼ rci;q

¼ 0:1. Note that we

select the ui;kðziÞ as a simple decentralized PI controller,

Cbi
¼ Cci

¼ 103; cfi
¼ cXi

¼ 10�3; f L
i ¼ 0:5, and the Qi and

Hurwitz Ai matrices as

Qi ¼
qi 0

0 qi


 �
(53)

Ai ¼
0 1

�1|{z}
ai;0

� 7� 107|fflfflfflffl{zfflfflfflffl}
ai;1

2
64

3
75 (54)

where qi¼ 1 and qi¼ 8 for the coupled chaotic and hyperchaotic
dynamics, respectively. We also replaced the sign function of
Eq. (37) with tanhðKeT

i PibiÞ to avoid discontinuities expected in
addition to guaranteeing uniqueness of the solution. We have
implemented the decentralized neuro-adaptive formulations in
MATLAB to be compared with the direct decentralized adaptive one
with respect to the computational cost, practical feasibility, and
robustness issues.

4 Results

Shown in Figs. 5 and 6 are the estimation processes for both the
decentralized neuro- and direct-adaptive schemes suppressing
the coupled chaotic dynamics. Comparing the results of both the
schemes reveals the lack of robustness against uncertainties
although the neuro-adaptive method seems to have slightly better
performance than the direct-based one. In particular, the estima-
tion process for the gi’s of the direct-based method (Fig. 6(c)), by
revealing oscillatory-like profiles and also used in Eq. (47), would
potentially result in practically infeasible control inputs.

It is of a great interest to observe that both the methods
suppressing the coupled hyperchaotic dynamics timely converge.
Figure 7 indicates that the neuro-adaptive scheme suppressing the
coupled hyperchaos is considerably more robust than the chaotic
case (Fig. 5). This looks interesting as the hyperchaotic network is
subject to higher amplitude stochastic oscillations in comparison
with the chaotic one (Fig. 3), and therefore, we expected to
observe the better robustness for the neuro-adaptive scheme
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extinguishing the coupled chaotic dynamics. We also revealed
[11] better robustness for the direct decentralized method sup-
pressing the coupled hyperchaotic dynamics in comparison with
the interconnected chaos. Therefore, selecting a superior perform-
ance for the robustness against uncertainties, as the first trade-off
addressed earlier, between the decentralized neuro- and direct-
adaptive methods looks challenging. However, it is obvious that
the robustness of the centralized adaptive scheme, which we
reported in Refs. [1] and [11], is significantly better than both
the decentralized methods. Note that both the decentralized
approaches, based on the “sufficient richness” condition [59,60],

would not exactly estimate the unknown parameters such that the
schemes expectedly yield values to allow the desired task to be
carried out.

Shown in Fig. 8 are the control inputs and driving magnetic tor-
ques of both the neuro-adaptive and direct-based methods for the
network subject to the coupled chaotic dynamics. By comparing
Figs. 8(a) and 8(b), one can easily conclude that the neuro-
adaptive control inputs are practically feasible in comparison with
the chattering control inputs of the direct-based scheme. The same
profiles of the control inputs are expected to be observed for the
driving magnetic torques shown in Figs. 8(c) and 8(d). It is fairly

Fig. 5 The estimation process for the decentralized neuro-adaptive scheme suppress-
ing the coupled chaotic dynamics; the lower and upper lines stand for the upstream and
downstream agents

Fig. 6 The direct decentralized adaptive scheme’s parameter estimation for sample fi,w

and gi of both the upstream and downstream agents; (a) and (c): the lower and upper
lines stand for the upstream and downstream agents and (b): the lower and upper lines
indicate the downstream and upstream agents

Fig. 7 The estimation process for the decentralized neuro-adaptive scheme suppress-
ing the coupled hyperchaotic dynamics; the lower and upper lines stand for the
upstream and downstream agents

Fig. 8 (a) The neuro-adaptive control inputs, (b) the direct-based control inputs, (c) the neuro-adaptive magnetic torques,
and (d) the direct-based magnetic torques
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straightforward to conclude that implementing the control inputs
and subsequently driving magnetic torques of the direct-based
method in extinguishing the coupled chaotic dynamics would
potentially result in failures of the coupled actuation units and
gradually the whole network. Therefore, the neuro-adaptive
scheme looks as a feasible tool for stabilizing the coupled chaotic
network although another trade-off, the computational burden,
needs to be carefully addressed.

Figure 9 presents the valves’ rotation angles and tracking errors
of both the schemes used in suppressing the coupled chaos.
Figures 9(a) and 9(b) reveal that the upstream and downstream
valves utilizing both the methods tend to the desirable trajectories
(Eq. (21)). The tracking errors of the neuro-adaptive and direct-
based methods presented in Figs. 9(c) and 9(d), respectively, are
negligible although the direct-based scheme shows a better
performance by yielding considerably smaller tracking errors in
comparison with those of the neuro-adaptive one. Note that the
noisy profiles of the direct-based tracking errors look logical with
respect to the chattering control inputs. Considering the practi-
cally feasible control inputs of the neuro-adaptive method and its
slightly better performance, with respect to the tracking errors of
the direct-based one, we may select the neuro-adaptive scheme as
an efficient and powerful controller to be used in suppressing the
coupled chaotic dynamics. However, this selection would be ques-
tionable with respect to both the methods’ computational times.
The computation time of the direct-based scheme is one-fiftieth of
the neuro-adaptive one: tdirect¼ 0.867 s and tneuro¼ 40 s. There-
fore, using the neuro-adaptive method would potentially cause

crucial issues by adding more agents into the network. Conse-
quently, an important trade-off needs to be addressed between the
practical feasibility of control inputs and computational burden
for extinguishing the interconnected chaotic dynamics.

Shown in Fig. 10 are the control inputs and driving magnetic
torques to be used in suppressing the coupled hyperchaotic
dynamics of two agents. As expected, higher control inputs and
subsequently driving magnetic torques, for both the schemes,
need to be applied in order to extinguish the coupled hyperchaos
in comparison with the interconnected chaotic dynamics (Fig. 8).
This looks logical with respect to the larger domains of attractions
of the hyperchaotic responses than those of the chaotic ones. It is
of a great interest to observe that the control inputs of both the
schemes (Figs. 10(a) and 10(b)), in the presence of the hyper-
chaotic responses having the higher amplitude stochastic oscilla-
tions, are almost practically feasible. However, the neuro-based
method yields slightly smoother control inputs, except within
small transient domains limited up to 3 s, than those of the direct-
based one. The same profiles are logically expected to be observed
for the driving magnetic torques shown in Figs. 10(c) and 10(d).
Therefore, the practical feasibility of control inputs would not be
a critical issue for selecting between the neuro-adaptive and
direct-based methods. Hence, the other trade-offs need to be care-
fully considered.

Figure 11 presents the valves’ rotation angles and tracking
errors of both the neuro-adaptive and direct-based schemes uti-
lized in suppressing the coupled hyperchaos. Despite the agents’
motions subject to the coupled chaotic dynamics (Figs. 9(a) and

Fig. 9 (a) The neuro-adaptive valves’ rotation angles, (b) the direct-based valves’ rotation angles, (c) the neuro-adaptive error
signals, and (d) the direct-based error signals

Fig. 10 (a) The neuro-adaptive control inputs, (b) the direct-based control inputs, (c) the neuro-adaptive magnetic tor-
ques, and (d) the direct-based magnetic torques

Fig. 11 (a) The neuro-adaptive valves’ rotation angles, (b) the direct-based valves’ rotation angles, (c) the neuro-
adaptive error signals, and (d) the direct-based error signals
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9(b)), we are able to distinguish considerable differences for the
valves’ rotation angles shown in Figs. 11(a) and 11(b). It is fairly
straightforward to conclude that the neuro-adaptive scheme out-
performs the direct-based one for perfect tracking of the desirable
trajectories (Eq. (22)). Although both the valves, using the direct-
based scheme, finally reach to the angles targeted (adif ¼ 62 deg),
the direct-based method is inefficient for wide ranges of the tran-
sient responses, as shown in Fig. 11(b). We hence expect to
observe significant higher tracking errors for both the agents con-
trolled by the direct-based scheme than those of the neuro-
adaptive one (Figs. 11(c) and 11(d)). It is interesting to note that,
despite the network subject to the coupled chaotic dynamics, the
tracking errors of both the agents using the neuro-adaptive scheme
converge almost to zero; we expected to observe the convergence
of tracking errors to zero for the network subject to the coupled
chaos.

The smoother control inputs, except within the small transient
domains, in addition to the convergence of tracking errors to zero
for the neuro-adaptive scheme extinguishing the coupled hyper-
chaos lead us to an easy selection between the methods. However,
the computation time of the neuro-adaptive scheme is higher than
that of the direct-based one for when the two agents are subject to
the coupled hyperchaos: tdirect¼ 0.981 s and tneuro¼ 45.34 s. We
hence need to address the important trade-offs which include the
smoother control inputs and smaller tracking errors of the neuro-
adaptive and considerable lower computation time of the direct-
based methods for suppressing the interconnected hyperchaotic
dynamics.

5 Conclusions

Through this comparative research effort, we first represented
the sixth-order interconnected analytical model of two bidirec-
tional solenoid actuated butterfly valves operating in series. The
initial conditions along with the critical parameters leading to the
coupled chaotic and hyperchaotic dynamics were presented to be
used in generating the energy-efficient desirable trajectories. The
harmful responses were then characterized using the powerful
tools of Lyapunov exponents and Poincar�e map. We could reveal
the coupled chaos and hyperchaos with the aid of one and two
positive Lyapunov exponents, respectively, along with the irregu-
lar Poincar�e maps of the two agents. We utilized both the decen-
tralized neuro- and direct-adaptive schemes for extinguishing both
the coupled chaotic and hyperchaotic dynamics.

It was shown that, for the coupled chaos, the neuro-adaptive
scheme yields practically feasible control inputs and subsequently
the driving magnetic torques; the direct-based method leads to the
chattering control inputs. Although the second trade-off, the com-
putation time, can be helpful to properly select between the meth-
ods. Note that the computation time of the direct-based method is
one-fiftieth of the neuro-adaptive one only for the two agents.

Surprisingly, the control inputs and subsequently the driving
magnetic torques of both the methods suppressing the coupled
hyperchaos are almost practically feasible; the neuro-adaptive
method yields slightly smoother control inputs, except within the
small transient domains, in comparison with the direct-based
scheme. Also, the tracking errors of the neuro-adaptive scheme
converge almost to zero, which may potentially outperform the
direct-based method. However, the computational cost of the
neuro-adaptive method is higher than that of the direct-based one.
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ive Control Design, Wiley-Interscience, New York.

[60] Slotine, J. J. E., and Li, W., 1991, Applied Nonlinear Control, Prentice Hall,
Upper Saddle River, NJ.

Journal of Computational and Nonlinear Dynamics MAY 2018, Vol. 13 / 051008-11

Downloaded From: http://computationalnonlinear.asmedigitalcollection.asme.org/ on 04/03/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1109/TSMC.2017.2744676
http://dx.doi.org/10.1007/s12239-012-0039-y
http://ieeexplore.ieee.org/document/4792728/
http://dx.doi.org/10.1016/j.neucom.2015.09.013
http://dx.doi.org/10.1016/j.neucom.2015.09.013
http://dx.doi.org/10.1002/rnc.1834
http://dx.doi.org/10.1049/iet-cta.2017.0644
http://dx.doi.org/10.1049/ic.2010.0416
http://dx.doi.org/10.1016/j.engappai.2007.08.005
http://dx.doi.org/10.1109/ACC.2002.1025307
http://dx.doi.org/10.1002/2014WR016696
http://dx.doi.org/10.1002/oca.2269
http://digital.csic.es/bitstream/10261/30063/1/doc1.pdf
http://dx.doi.org/10.3182/20100712-3-FR-2020.00093
http://dx.doi.org/10.1115/1.2137348
http://adsabs.harvard.edu/abs/2012PhDT........42N
http://adsabs.harvard.edu/abs/2012PhDT........42N
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.1109/TIM.2009.2016388
http://dx.doi.org/10.1109/9.481548
http://dx.doi.org/10.1109/9.388698
http://dx.doi.org/10.1109/CDC.1994.411173
http://dx.doi.org/10.1109/WISP.2007.4447585
http://dx.doi.org/10.1093/ietfec/e90-a.10.2239

	s1
	l
	s2
	1
	FD1
	FD2
	FD3
	FD4
	FD5
	FD6
	FD7
	FD8
	FD9
	FD10
	FD11
	1
	2
	FD12
	FD13
	FD14
	FD15
	FD16
	FD17
	FD18
	FD19
	FD20
	s3
	FD21
	FD22
	FD23
	FD24
	FD25
	FD26
	FD27
	FD28
	FD29
	FD30
	FD31
	FD32
	FD33
	FD34
	3
	FD35
	FD36
	FD37
	4
	FD38
	FD39
	FD40
	FD41
	FD42
	FD43
	FD44
	FD45
	FD46
	FD47
	FD48
	FD49
	FD50
	FD51
	FD52
	FD53
	FD54
	s4
	5
	6
	7
	8
	9
	10
	11
	s5
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60

